Moment capacity of cold-formed channel beams with edge-stiffened web holes, un-stiffened web holes and plain webs

2020 ◽  
Vol 157 ◽  
pp. 107070
Author(s):  
Boshan Chen ◽  
Krishanu Roy ◽  
Asraf Uzzaman ◽  
James B.P. Lim
Author(s):  
Lakshmi Thangasamy ◽  
◽  
Gunasekaran Kandasamy ◽  

Many researches on double skin sandwich having top and bottom steel plates and in between concrete core called as steel-concrete-steel (SCS) were carried out by them on this SCS type using with different materials. Yet, use of coconut shell concrete (CSC) as a core material on this SCS form construction and their results are very limited. Study investigated to use j-hook shear studs under flexure in the concept of steel-concrete-steel (SCS) in which the core concrete was CSC. To compare the results of CSC, the conventional concrete (CC) was also considered. To study the effect of quarry dust (QD) in its place of river sand (RS) was also taken. Hence four different mixes two without QD and two with QD both in CC and CSC was considered. The problem statement is to examine about partial and fully composite, moment capacity, deflection and ductility properties of CSC used SCS form of construction. Core concrete strength and the j-hook shear studs used are influences the moment carrying capacity of the SCS beams. Use of QD in its place of RS enhances the strength of concrete produced. Deflections predicted theoretically were compared with experimental results. The SCS beams showed good ductility behavior.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 567
Author(s):  
Łukasz Żmuda-Trzebiatowski ◽  
Piotr Iwicki

The paper examines effectiveness of the vibration correlation technique which allows determining the buckling or limit loads by means of measured natural frequencies of structures. A steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue and geometrically static non-linear problems. Both perfect and imperfect geometries were considered. Initial geometrical imperfections included first and second buckling and vibration mode shapes with three amplitudes. The vibration correlation technique proved to be useful in estimating limit or buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The significant deviations between the predicted and calculated buckling and limit loads occurred when large imperfections were considered.


Author(s):  
Enrico Torselletti ◽  
Luigino Vitali ◽  
Erik Levold ◽  
Kim J. Mo̸rk

The development of deep water gas fields using trunklines to carry the gas to the markets is sometime limited by the feasibility/economics of the construction phase. In particular there is a market for using S-lay vessels in water depth larger than 1000m. The S-lay feasibility depends on the applicable tension at the tensioner which is a function of water depth, stinger length and stinger curvature (for given stinger length by its curvature). This means that, without major vessel up-grading and to avoid too long stingers that are prone to damages caused by environmental loads, the application of larger stinger curvatures than presently allowed by current regulations/state of the art is needed. The work presented in this paper is a result of the project “Development of a Design Guideline for Submarine Pipeline Installation” sponsored by STATOIL and HYDRO. The technical activities are performed in co-operation by DNV, STATOIL and SNAMPROGETTI. The scope of the project is to produce a LRFD (Load Resistant Factor Design) design guideline to be used in the definition and application of design criteria for the laying phase e.g. to S and J-lay methods/equipment. The guideline covers D/t from 15 to 45 and applied strains over the overbend in excess of 0.5%. This paper addresses the failure modes relevant for combined high curvatures/strains, axial, external pressure and local forces due to roller over the stinger of an S-lay vessel and to sea bottom contacts, particularly: • Residual pipe ovality after laying, • Maximum strain and bending moment capacity. Analytical equations are proposed in accordance with DNV OS F101 philosophy and design format.


2012 ◽  
Vol 166-169 ◽  
pp. 493-496
Author(s):  
Roya Kohandel ◽  
Behzad Abdi ◽  
Poi Ngian Shek ◽  
M.Md. Tahir ◽  
Ahmad Beng Hong Kueh

The Imperialist Competitive Algorithm (ICA) is a novel computational method based on the concept of socio-political motivated strategy, which is usually used to solve different types of optimization problems. This paper presents the optimization of cold-formed channel section subjected to axial compression force utilizing the ICA method. The results are then compared to the Genetic Algorithm (GA) and Sequential Quadratic Programming (SQP) algorithm for validation purpose. The results obtained from the ICA method is in good agreement with the GA and SQP method in terms of weight but slightly different in the geometry shape.


2012 ◽  
Vol 42 (1) ◽  
pp. 55-70 ◽  
Author(s):  
A. Kasimzade ◽  
S. Tuhta

Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced PlasticIn the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.


Author(s):  
Ji-Myung Nam ◽  
Joonmo Choung ◽  
Se-Yung Park ◽  
Sung-Won Yoon

This paper presents the prediction of residual ultimate strength of a very large crude oil carrier considering damage extents due to collision and grounding accidents. In order to determine extents of damage, two types of probabilistic approaches are employed: deterministic approach based on regulations based on ABS [1], DNV [2], and MARPOL [3] and probabilistic approach based on IMO probability density functions (PDFs) (IMO guidelines [4]). Hull girder ultimate strength is calculated using Smith method which is dependent on how much average compressive strength of stiffened panel is accurate. For this reason, this paper uses two different methods to predict average compressive strength of stiffened panel composing hull girder section: CSR formulas and nonlinear FEA. Calculated average compressive strength curves using CSR formulas (IACS [5, 6]) and nonlinear FEA are imported by an in-house software UMADS. Residual ultimate moment capacities are presented for various heeling angles from 0° (sagging) to 180° (hogging) by 15° increments considering possible flooding scenarios. Three regulations and IMO guidelines yield minimum of reduction ratios of hull girder moment capacity (minimum of damage indices) approximately at heeling angles 90° (angle of horizontal moment) and 180° (angle of hogging moment), respectively, because damage area is located farthest from neutral axis.


Sign in / Sign up

Export Citation Format

Share Document