Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook

2022 ◽  
Vol 172 ◽  
pp. 108760
Author(s):  
Guangyong Sun ◽  
Dongdong Chen ◽  
Guohua Zhu ◽  
Qing Li
Author(s):  
Matt Wallbanks ◽  
Muhammad Farhan Khan ◽  
Mahdi Bodaghi ◽  
Andrew Triantaphyllou ◽  
Ahmad Serjouei

Abstract Auxetic metamaterials exhibit an unexpected behaviour of a negative Poisson’s ratio, meaning they expand transversely when stretched longitudinally. This behaviour is generated predominantly due to the way individual elements of an auxetic lattice are structured. These structures are gaining interest in a wide variety of applications such as energy absorption, sensors, smart filters, vibration isolation and medical etc. Their potential could be further exploited by the use of additive manufacturing. Currently there is a lack of guidance on how to design these structures. This paper highlights state-of-the-art in auxetic metamaterials and its commonly used unit-cell types. It further explores the design approaches used in the literature on creating auxetic lattices for different applications and proposes, for the first time, a workflow comprising design, simulation and testing of auxetic structures. This workflow provides guidance on the design process for using auxetic metamaterials in structural applications.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 713-740 ◽  
Author(s):  
José H. Zagal ◽  
Sophie Griveau ◽  
Mireya Santander-Nelli ◽  
Silvia Gutierrez Granados ◽  
Fethi Bedioui

We discuss here the state of the art on hybrid materials made from single (SWCNT) or multi (MWCNT) walled carbon nanotubes and MN4complexes such as metalloporphyrins and metallophthalocyanines. The hybrid materials have been characterized by several methods such as cyclic voltammetry (CV), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electrochemical microscropy (SECM). The materials are employed for electrocatalysis of reactions such as oxygen and hydrogen peroxide reduction, nitric oxide oxidation, oxidation of thiols and other pollutants.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (8) ◽  
pp. 639-643 ◽  
Author(s):  
Alan H. Brothers ◽  
David C. Dunand

AbstractThis article reviews the state of the art in the field of porous amorphous metals by describing current processing techniques, mechanical properties, and potential applications. In addition to the reduction in density, the main benefit of introducing porosity in amorphous metals is the improvement in compressive ductility and energy absorption. This ductilizing effect is explained by: (1) shear-band interruption by individual pores at low porosities and (2) stable plastic bending of thin struts at higher porosities, with cellular amorphous metals displaying compressive ductilities of up to 80%.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Christopher Igwe Idumah ◽  
Azman Hassan

AbstractThe quest to develop eco-benign polymeric hybrid materials arose out of the need to protect the environment from the harmful effects of synthetic petroleum polymeric waste and meet the specific needs of industries such as oil and gas, aerospace, automotives, packaging, electronics biomedicals, pharmaceuticals, agricultural, and construction. This has resulted in synergistic hybrid assembling of natural fibers, polymers, biopolymers, and nanoparticles. Bionanocomposites based on inorganic nanoparticle reinforced biofiber, polymers and biopolymers, and polysaccharides such as chitosan, alginate, and cellulose derivatives, and so on, exhibiting at least a dimension at the nanometer scale, are an emerging group of nanostructured hybrid materials. These hybrid bionanocomposites exhibit structural and multifunctional properties suitable for versatile applications similar to polymer nanocomposites. Their biocompatibility and biodegradability provide opportunities for applications as eco-benign green nanocomposites. This review presents state-of-the-art progress in synergistic nanotechnological assembling of bionanocomposites relative to processing technologies, product development, and applications.


Author(s):  
T. A. Welton

Various authors have emphasized the spatial information resident in an electron micrograph taken with adequately coherent radiation. In view of the completion of at least one such instrument, this opportunity is taken to summarize the state of the art of processing such micrographs. We use the usual symbols for the aberration coefficients, and supplement these with £ and 6 for the transverse coherence length and the fractional energy spread respectively. He also assume a weak, biologically interesting sample, with principal interest lying in the molecular skeleton remaining after obvious hydrogen loss and other radiation damage has occurred.


Sign in / Sign up

Export Citation Format

Share Document