polymeric waste
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 35)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Lorelis González-López ◽  
Logan Kearney ◽  
Christopher J. Janke ◽  
James Wishart ◽  
Nihal Kanbargi ◽  
...  

The major societal problem of polymeric waste necessitates new approaches to break down especially challenging discarded waste streams. Gamma radiation was utilized in conjunction with varying solvent environments in an attempt to discern the efficacy of radiolysis as a tool for the deliberate degradation of model network polyesters. Our EPR results demonstrated that gamma radiolysis of neat resin and in the presence of four widely used solvents induces glycosidic scissions on the backbone of the polyester chains. EPR results clearly show the formation of alkoxy radicals and C-centered radicals as primary intermediate radiolytic products. Despite the protective role of the phenyl groups on the backbone of the radiation-induced polyester chains, the radiolytic-glycosidic scissions predominate. Among the following three solvents used in this study (water, isopropyl alcohol, and dichloromethane), the highest radiolytic yield of glycosidic scission was achieved using water. The •OH radicals produced in the radiolysis of phenyl unsaturated polyester aqueous suspensions very rapidly abstract H atoms from the methylene group, which is followed by a very rapid glycosidic scission. The lowest glycosidic yield was found in the dichloromethane solutions of these polyester resins due to scavenging by the fast electron capture reactions.


2022 ◽  
Vol 23 (1) ◽  
pp. 156-161
Author(s):  
Oleg Nagurskyy ◽  
Halyna Krylova ◽  
Viktor Vasiichuk ◽  
Stepan Kachan ◽  
Yurii Dziurakh ◽  
...  

Author(s):  
Yuriy Paladiichuk ◽  
Inna Telyatnuk

The development of industry has led to the unlimited technological application of polymers, ranging from plastic bags, rubber, fabrics, paper and other materials. Displacing traditional materials, polymer products began to be used in agriculture. Polymers are used to make films for soil cover (mulching), anti-hail nets, shaft bushings, gears, body parts, tanks for storage and transportation of fertilizers and working fluids and many other parts. The operational properties of polymer products are becoming more and more perfect, but at the same time the methods of polymer waste management and their utilization are being developed and complicated. Over time, they can no longer be used for their intended purpose, so they are discarded and sent to landfills, while polymers are valuable structural materials and their reuse will not only be positive for the environment, but can also become a profitable branch of the agro-industrial complex. Pellet production is one of the methods of recycling polymer waste, which in the future can be used for the production of new parts, as well as added to the composition of composite materials based on organic or mineral fillers. This article examines the problem of recycling polymer waste by improving their processing technologies. The analysis of existing methods of utilization and processing of polymeric waste generated in agriculture is carried out. Determination of physical and mechanical properties of polymer waste, in particular thermoplastics. Taking into account the received information, conclusions are made and the analysis of methods of utilization and processing of polymeric waste in secondary raw materials is carried out.


2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Marco Laurence M. Budlayan ◽  
Jonathan N. Patricio ◽  
Jeanne Phyre Lagare-Oracion ◽  
Susan D. Arco ◽  
Arnold C. Alguno ◽  
...  

AbstractA straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the same time, energy dispersive X-ray spectroscopy revealed the presence of carbon and oxygen as the primary components of the fibers. Contact angle (θCA) measurements showed the more enhanced hydrophobicity of the PS microfiber (θCA = 100.2 ± 1.3°) compared to the untreated EPS foam (θCA = 92.9 ± 3.5°). The PS microfiber also displayed better oleophilicity compared to EPS foam. Finally, the fabricated PS microfibers demonstrated promising potential for oil removal in water with a calculated sorption capacity value of about 15.5 g/g even at a very short contact time. The fabricated PS fiber from the waste EPS foam may provide valuable insights into the valorization of polymeric waste materials for environmental and other related applications.


Author(s):  
Stefânia Lima Oliveira Metzker ◽  
Ticyane Pereira Freire Sabino ◽  
Juliana Farinassi Mendes ◽  
André Geraldo Cornélio Ribeiro ◽  
Rafael Farinassi Mendes
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7245
Author(s):  
Anna Matuszewska ◽  
Adam Hańderek ◽  
Maciej Paczuski ◽  
Krzysztof Biernat

Plastics are one of the basic construction materials with a wide range of various applications. One of their disadvantages is the problem of managing the waste they generate. Chemical recycling offers the possibility of liquefying polymeric waste and using it as fuel components. Existing technologies giving good quality products are expensive. The HT technology developed and described by the authors is cheaper and enables a high quality product to be obtained. The authors have shown that the quality of the received fuel components is influenced not only by the polymer waste processing technology, but also by the feedstock composition. The presented thermolysis technology not only enables more advanced recycling, but also gives the possibility of partial improvement of the product quality. A product with the best physico-chemical properties was obtained from a blend of PE:PP:PS used in the ratio 60:30:10. It was proved that diesel and petrol blends composed of a 5% v/v share of petrol and diesel fractions, obtained from thermolysis of plastics, meet the normative requirements of fuel quality standards.


2021 ◽  
Vol 4 (10(112)) ◽  
pp. 31-37
Author(s):  
Oleksii Sezonenko ◽  
Oleksii Vasechko ◽  
Viktor Aleksyeyenko

This experimental study has confirmed that during thermal decomposition of polymeric waste samples at a temperature of 850 °C, without oxygen access, there is a 90 % drop in the mass of this waste with the release of a large volume of gaseous products. This feature should be taken into consideration in the engineering calculations of reaction chambers, reactors, and connecting gas pipelines. The analytical study was carried out by a method of thermodynamic analysis using the universal estimation system Astra (TERRA). It has been shown that with an increase in reaction temperature there is a change in the composition of the products of thermal destruction of polymeric waste by reducing the mole fraction of СН4 and increasing the proportion of Н2. The calorific value was calculated according to Mendeleev’s empirical formula. The experimental study (a pyrolysis-gas chromatography method) has confirmed the calculation results regarding an increase in the proportion of hydrogen in the gaseous products of destruction with an increase in process temperature. As a result, due to the lower volumetric heat of hydrogen combustion, the total caloric content of the synthesis gas obtained is significantly reduced. For the experiments, a laboratory installation of low-temperature pyrolysis of polymers with external supply of thermal energy was built, and synthesis gas was used as an energy carrier. At the experimental-industrial installation, by a low-temperature pyrolysis method, the synthesis gas of a stable composition with a lower heat of combustion of 24.8 kJ/m3 was obtained. The reliability of the results of the proposed estimation method to the results of instrumental measurements has been shown. Promising areas of further studies have been determined, including the optimization of processes of thermal destruction of chlorine-containing polymer waste; the effective use of hydrogen from the composition of the synthesis gas obtained.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4694
Author(s):  
Alena Opálková Šišková ◽  
Petra Peer ◽  
Anita Eckstein Andicsová ◽  
Igor Jordanov ◽  
Piotr Rychter

In modern society, it is impossible to imagine life without polymeric materials. However, managing the waste composed of these materials is one of the most significant environmental issues confronting us in the present day. Recycling polymeric waste is the most important action currently available to reduce environmental impacts worldwide and is one of the most dynamic areas in industry today. Utilizing this waste could not only benefit the environment but also promote sustainable development and circular economy management. In its program statement, the European Union has committed to support the use of sorted polymeric waste. This study reviews recent attempts to recycle this waste and convert it by alternative technologies into fine, nano-, and microscale fibers using electrospinning, blowing, melt, or centrifugal spinning. This review provides information regarding applying reprocessed fine fibers in various areas and a concrete approach to mitigate the threat of pollution caused by polymeric materials.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2423
Author(s):  
Waleed Ahmed ◽  
Sidra Siraj ◽  
Ali H. Al-Marzouqi

Silica exhibits properties such that its addition into polymeric materials can result in an enhanced overall quality and improved characteristics and as a result silica has been widely used as a filler material for improving the rheological properties of polymeric materials. The usage of polymers in three-dimensional printing technology has grown exponentially, which has increased the amount of waste produced during this process. Several polymers, such as polypropylene (PP), polyvinyl alcohol (PVA), polylactic acid (PLA), and nylon, are applied in this emerging technology. In this study, the effect of the addition of silica as a filler on the mechanical, thermal, and bulk density properties of the composites prepared from the aforementioned polymeric waste was studied. In addition, the morphology of the composite materials was characterized via scanning electron microscopy. The composite samples were prepared with various silica concentrations using a twin extruder followed by hot compression. Generally, the addition of silica increased the tensile strength of the polymers. For instance, the tensile strength of PVA with 5 wt% filler increased by 76 MPa, whereas those of PP and PLA with 10 wt% filler increased by 7.15 and 121.03 MPa, respectively. The crystallinity of the prepared composite samples ranged from 14% to 35%, which is expected in a composite system. Morphological analysis revealed the random dispersion of silica particles and agglomerate formation at high silica concentrations. The bulk density of the samples decreased with increased amount of filler addition. The addition of silica influenced the changes in the characteristics of the polymeric materials. Furthermore, the properties presented in this study can be used to further study the engineering design, transportation, and production processes, promoting the recycling and reuse of such waste in the same technology with the desired properties.


Sign in / Sign up

Export Citation Format

Share Document