Climate change and infrastructure risk: Indoor heat exposure during a concurrent heat wave and blackout event in Phoenix, Arizona

Urban Climate ◽  
2021 ◽  
Vol 36 ◽  
pp. 100787
Author(s):  
Brian Stone ◽  
Evan Mallen ◽  
Mayuri Rajput ◽  
Ashley Broadbent ◽  
E. Scott Krayenhoff ◽  
...  
2020 ◽  
Vol 287 (1932) ◽  
pp. 20200992 ◽  
Author(s):  
Anthony T. Breitenbach ◽  
Amanda W. Carter ◽  
Ryan T. Paitz ◽  
Rachel M. Bowden

Most organisms are exposed to bouts of warm temperatures during development, yet we know little about how variation in the timing and continuity of heat exposure influences biological processes. If heat waves increase in frequency and duration as predicted, it is necessary to understand how these bouts could affect thermally sensitive species, including reptiles with temperature-dependent sex determination (TSD). In a multi-year study using fluctuating temperatures, we exposed Trachemys scripta embryos to cooler, male-producing temperatures interspersed with warmer, female-producing temperatures (heat waves) that varied in either timing during development or continuity and then analysed resulting sex ratios. We also quantified the expression of genes involved in testis differentiation ( Dmrt1 ) and ovary differentiation ( Cyp19A1 ) to determine how heat wave continuity affects the expression of genes involved in sexual differentiation. Heat waves applied during the middle of development produced significantly more females compared to heat waves that occurred just 7 days before or after this window, and even short gaps in the continuity of a heat wave decreased the production of females. Continuous heat exposure resulted in increased Cyp19A1 expression while discontinuous heat exposure failed to increase expression in either gene over a similar time course. We report that even small differences in the timing and continuity of heat waves can result in drastically different phenotypic outcomes. This strong effect of temperature occurred despite the fact that embryos were exposed to the same number of warm days during a short period of time, which highlights the need to study temperature effects under more ecologically relevant conditions where temperatures may be elevated for only a few days at a time. In the face of a changing climate, the finding that subtle shifts in temperature exposure result in substantial effects on embryonic development becomes even more critical.


Climate ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 93 ◽  
Author(s):  
James Milner ◽  
Colin Harpham ◽  
Jonathon Taylor ◽  
Mike Davies ◽  
Corinne Le Quéré ◽  
...  

2016 ◽  
Vol 2-3 ◽  
pp. 41-51 ◽  
Author(s):  
Sarah Opitz-Stapleton ◽  
Lea Sabbag ◽  
Kate Hawley ◽  
Phong Tran ◽  
Lan Hoang ◽  
...  

Author(s):  
Moda ◽  
Filho ◽  
Minhas

The literature on the potential impacts of climate change on the health of outdoor workers has received limited attention as a whole, and in sub-Saharan African countries in particular. Yet, substantial numbers of workers are experiencing the health effects of elevated temperature, in combination with changes in precipitation patterns, climate extremes and the effects of air pollution, which have a potential impact on their safety and wellbeing. With increased temperatures within urban settlements and frequent heats waves, there has been a sudden rise in the occurrence of heat-related illness leading to higher levels of mortality, as well as other adverse health impacts. This paper discusses the impacts of extreme heat exposure and health concerns among outdoor workers, and the resultant impacts on their productivity and occupational safety in tropical developing countries with a focus on Sub-Saharan Africa, where there is a dearth of such studies. Aside from the direct effects caused by extreme heat exposure, other indirect health hazards associated with increasing heat among this group includes exposures to hazardous chemicals and other vector-borne diseases. In addition, reduced work capacity in heat-exposed jobs will continue to rise and hinder economic and social development in such countries. There is an urgent need for further studies around the health and economic impacts of climate change in the workplace, especially in tropical developing countries, which may guide the implementation of the measures needed to address the problem.


Physiology ◽  
2019 ◽  
Vol 34 (5) ◽  
pp. 302-313 ◽  
Author(s):  
Andrew E. McKechnie ◽  
Blair O. Wolf

Understanding the heat tolerances of small mammals and birds has taken on new urgency with the advent of climate change. Here, we review heat tolerance limits, pathways of evaporative heat dissipation that permit the defense of body temperature during heat exposure, and mechanisms operating at tissue, cellular, and molecular levels.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 75 ◽  
Author(s):  
Ilias Agathangelidis ◽  
Constantinos Cartalis ◽  
Mat Santamouris

Cities worldwide are getting warmer due to the combined effects of urban heat and climate change. To this end, local policy makers need to identify the most thermally vulnerable areas within cities. The Local Climate Zone (LCZ) scheme highlights local-scale variations; however, its classes, although highly valuable, are to a certain extent generalized in order to be universally applicable. High spatial resolution indicators have the potential to better reflect city-specific challenges; in this paper, the Urban Heat Exposure (UHeatEx) indicator is developed, integrating the physical processes that drive the urban heat island (UHI). In particular, the urban form is modeled using remote sensing and geographical information system (GIS) techniques, and used to estimate the canyon aspect ratio and the storage heat flux. The Bowen ratio is calculated using the aerodynamic resistance methodology and downscaled remotely sensed surface temperatures. The anthropogenic heat flux is estimated via a synergy of top–down and bottom–up inventory approaches. UHeatEx is applied to the city of Athens, Greece; it is correlated to air temperature measurements and compared to the LCZs classification. The results reveal that UHeatEx has the capacity to better reflect the strong intra-urban variability of the thermal environment in Athens, and thus can be supportive for adaptation responses. High-resolution climate projections from the EURO-CORDEX ensemble for the region show that the adverse effects of the existing thermal inequity are expected to worsen in the coming decades.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2010 ◽  
Author(s):  
Caroline J. Smith

Predicted global climate change, including rising average temperatures, increasing airborne pollution, and ultraviolet radiation exposure, presents multiple environmental stressors contributing to increased morbidity and mortality. Extreme temperatures and more frequent and severe heat events will increase the risk of heat-related illness and associated complications in vulnerable populations, including infants and children. Historically, children have been viewed to possess inferior thermoregulatory capabilities, owing to lower sweat rates and higher core temperature responses compared to adults. Accumulating evidence counters this notion, with limited child–adult differences in thermoregulation evident during mild and moderate heat exposure, with increased risk of heat illness only at environmental extremes. In the context of predicted global climate change, extreme environmental temperatures will be encountered more frequently, placing children at increased risk. Thermoregulatory and overall physiological strain in high temperatures may be further exacerbated by exposure to/presence of physiological and environmental stressors including pollution, ultraviolet radiation, obesity, diabetes, associated comorbidities, and polypharmacy that are more commonly occurring at younger ages. The aim of this review is to revisit fundamental differences in child–adult thermoregulation in the face of these multifaceted climate challenges, address emerging concerns, and emphasize risk reduction strategies for the health and performance of children in the heat.


Sign in / Sign up

Export Citation Format

Share Document