In Vivo Assessment of the Potential for Renal Bio-Effects from the Vaporization of Perfluorocarbon Phase-Change Contrast Agents

2018 ◽  
Vol 44 (2) ◽  
pp. 368-376 ◽  
Author(s):  
A. Gloria Nyankima ◽  
Juan D. Rojas ◽  
Rachel Cianciolo ◽  
Kennita A. Johnson ◽  
Paul A. Dayton
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Rita Sofia Garcia Ribeiro ◽  
Conny Gysemans ◽  
João Paulo Monteiro Carvalho Mori da Cunha ◽  
Bella B. Manshian ◽  
Daniel Jirak ◽  
...  

1999 ◽  
Vol 6 (4) ◽  
pp. 281-290 ◽  
Author(s):  
A N D R E A S VEIHELMANN ◽  
ANTHONY G U S T A V E HARRIS ◽  
F R I T Z KROMBACH ◽  
E L K E SCHÜTZE ◽  
HANS JÜRGEN REFIOR ◽  
...  

2010 ◽  
Vol 58 (S 01) ◽  
Author(s):  
W Mrowczynski ◽  
A Rungatscher ◽  
F Buchegger ◽  
JC Tille ◽  
D Mugnai ◽  
...  

2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


Sign in / Sign up

Export Citation Format

Share Document