Tissue Characterization by Low-Frequency Acoustic Waves Generated by a Single High-Frequency Focused Ultrasound Beam

2021 ◽  
Vol 47 (2) ◽  
pp. 334-344
Author(s):  
Guilherme A. Braz ◽  
Andre L. Baggio ◽  
Paulo M. Agnollitto ◽  
Felipe W. Grillo ◽  
Theo Z. Pavan ◽  
...  
2009 ◽  
Vol 75 (2) ◽  
pp. 193-202 ◽  
Author(s):  
H. ALINEJAD ◽  
P. A. ROBINSON ◽  
O. SKJAERAASEN ◽  
I. H. CAIRNS

AbstractA new set of equations describing the coupling of high-frequency electrostatic waves with ion fluctuations is obtained taking into account a non-thermal electron distribution. It is shown that there exist stationary envelope solitons which have qualitatively different structures from the solutions reported earlier. In particular, the Langmuir field envelopes are found with similar width and strong field intensities in comparison to the isothermal case. It is also shown that the presence of the fast or non-thermal electrons significantly modifies the nature of Langmuir solitons in the transition from a single-hump solution to a double-hump solution as the Mach number increases to unity. The low-frequency electrostatic potential associated with the high-frequency Langmuir field has the usual single-dip symmetric structure whose amplitude increases with increasing Mach number. Furthermore, the dip at the center of the double-hump Langmuir soliton is found to become smaller as the proportion of non-thermal electrons increases.


2015 ◽  
Vol 33 (1) ◽  
pp. 137-142 ◽  
Author(s):  
X. Zhang ◽  
L. Tang

Abstract. Underground nuclear explosions (UNEs) can induce acoustic-gravity waves, which disturb the ionosphere and initiate traveling ionospheric disturbances (TIDs). In this paper, we employ a multi-step and multi-order numerical difference method with dual-frequency GPS data to detect ionospheric disturbances triggered by the North Korean UNE on 25 May 2009. Several International GNSS Service (IGS) stations with different distances (400 to 1200 km) from the epicenter were chosen for the experiment. The results show that there are two types of disturbances in the ionospheric disturbance series: high-frequency TIDs with periods of approximately 1 to 2 min and low-frequency waves with period spectrums of 2 to 5 min. The observed TIDs are situated around the epicenter of the UNE, and show similar features, indicating the origin of the observed disturbances is the UNE event. According to the amplitudes, periods and average propagation velocities, the high-frequency and low-frequency TIDs can be attributed to the acoustic waves in the lower ionosphere and higher ionosphere, respectively.


2011 ◽  
Vol 77 (5) ◽  
pp. 693-707 ◽  
Author(s):  
DANIEL VERSCHAREN ◽  
ECKART MARSCH

AbstractIn this paper, we study the weakly-compressive high-frequency plasma waves which are superposed on a large-amplitude Alfvén wave in a multi-fluid plasma consisting of protons, electrons, and alpha particles. For these waves, the plasma environment is inhomogenous due to the presence of the low-frequency Alfvén wave with a large amplitude, a situation that may apply to space plasmas such as the solar corona and solar wind. The dispersion relation of the plasma waves is determined from a linear stability analysis using a new eigenvalue method that is employed to solve the set of differential wave equations which describe the propagation of plasma waves along the direction of the constant component of the Alfvén wave magnetic field. This approach also allows one to consider weak compressive effects. In the presence of the background Alfvén wave, the dispersion branches obtained differ significantly from the situation of a uniform plasma. Due to compressibility, acoustic waves are excited and couplings between various modes occur, and even an instability of the compressive mode. In a kinetic treatment, these plasma waves would be natural candidates for Landau-resonant wave–particle interactions, and may thus via their damping lead to particle heating.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. P27-P45 ◽  
Author(s):  
Leighton M. Watson ◽  
Jonatan Werpers ◽  
Eric M. Dunham

Seismic air guns are broadband sources that generate acoustic waves at many frequencies. The low-frequency waves can be used for imaging, whereas the high-frequency waves are attenuated and/or scattered before they can reflect from targets of interest in the subsurface. It is desirable to reduce the amplitude of the high-frequency acoustic waves because they are thought to be disruptive, and potentially damaging, to marine life and are not useful for geophysical purposes. The high-frequency acoustic waves are primarily associated with the initial expansion of the air-gun bubble and associated peak in the acoustic pressure time series, which is commonly referred to as the source signature of the air gun. We have developed a quasi-1D model of a seismic air gun coupled to a spherical bubble that accounts for gas dynamics and spatially variable depressurization inside the firing chamber to investigate controls on the initial peak of the source signature. The model is validated against data collected during field tests in Lake Seneca, New York. Simulations and field data show that the initial peak is primarily dependent on the operating pressure. A lower gun pressure results in a smaller peak amplitude and a slower rise time. The slope, the amplitude of the initial peak divided by the rise time, is used as a proxy for environmental impact and can decrease by as much as 50% when the air-gun pressure is reduced from 2000 to 1000 psi. The low frequencies are controlled by the total discharged mass, which is dependent upon the gun volume and pressure. Decreasing the operating pressure while simultaneously increasing the gun volume will reduce the high frequencies while maintaining the desirable low-frequency signals.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
T. C. Tszeng

This study examined the characteristics of sidebands in modulation spectroscopy on a high-frequency wave interacting with a defect that imposes a simple switching type disruption caused by a low-frequency, high-amplitude vibration. A simple close form of sideband amplitude is obtained by convolution of a high-frequency probing wave with harmonics of a pulse wave. This study also proposes an experimental procedure based on sideband phases for determining the crack parameters.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Sign in / Sign up

Export Citation Format

Share Document