A short review on thermal vapor sulfurization of semiconductor thin films for optoelectronic applications

Vacuum ◽  
2018 ◽  
Vol 154 ◽  
pp. 44-48 ◽  
Author(s):  
Hongfei Liu
2021 ◽  
Vol 33 (7) ◽  
pp. 1481-1487
Author(s):  
S.M. Ho ◽  
M.H.D. Othman ◽  
M.R. Adam ◽  
K. Mohanraj

The productions of the thin metallic chalcogenide films are of particular interest for the wide range of fabrication of the solar cells, sensors, photodiode arrays, photoconductors. Raman spectroscopy is used to measure the scattering radiation of a matter. Basically, the spectroscopic methods can be defined as the study of the interaction of electromagnetic radiation with a matter. It can be based on the phenomenon of absorption, fluorescence, emission or scattering. The observation of peaks supported the formation of amorphous or crystalline nature of the samples. In this short review, the authors had gathered some informations about the Raman studies of recently synthesized metal chalcogenide semiconductor thin films.


2018 ◽  
Author(s):  
Weikun Zhu ◽  
Erfan Mohammadi ◽  
Ying Diao

Morphology modulation offers significant control over organic electronic device performance. However, morphology quantification has been rarely carried out via image analysis. In this work, we designed a MATLAB program to evaluate two key parameters describing morphology of small molecule semiconductor thin films: fractal dimension and film coverage. We then employ this program in a case study of meniscus-guided coating of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<sub>8</sub>-BTBT) under various conditions to analyze a diverse and complex morphology set. The evolution of morphology in terms of fractal dimension and film coverage was studied as a function of coating speed. We discovered that combined fractal dimension and film coverage can quantitatively capture the key characteristics of C<sub>8</sub>-BTBT thin film morphology; change of these two parameters further inform morphology transition. Furthermore, fractal dimension could potentially shed light on thin film growth mechanisms.


2019 ◽  
Vol 19 (7) ◽  
pp. 3777-3784
Author(s):  
Jakub Rozbořil ◽  
Katharina Broch ◽  
Roland Resel ◽  
Ondřej Caha ◽  
Filip Münz ◽  
...  

2014 ◽  
Vol 26 (45) ◽  
pp. 7555-7560 ◽  
Author(s):  
Shota Nunomura ◽  
Xiaozhou Che ◽  
Stephen R. Forrest

2021 ◽  
Vol 33 (23) ◽  
pp. 2170181
Author(s):  
Seungki Jo ◽  
Soyoung Cho ◽  
U Jeong Yang ◽  
Gyeong‐Seok Hwang ◽  
Seongheon Baek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document