Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid

2009 ◽  
Vol 129 (1-2) ◽  
pp. 36-48 ◽  
Author(s):  
Kerry A. Daly ◽  
Sonia L. Mailer ◽  
Matthew R. Digby ◽  
Christophe Lefévre ◽  
Peter Thomson ◽  
...  
2010 ◽  
Vol 17 (11) ◽  
pp. 1797-1809 ◽  
Author(s):  
Salim Bougarn ◽  
Patricia Cunha ◽  
Abdallah Harmache ◽  
Angélina Fromageau ◽  
Florence B. Gilbert ◽  
...  

ABSTRACT Staphylococcus aureus, a major pathogen for the mammary gland of dairy ruminants, elicits the recruitment of neutrophils into milk during mastitis, but the mechanisms are incompletely understood. We investigated the response of the bovine mammary gland to muramyl dipeptide (MDP), an elementary constituent of the bacterial peptidoglycan, alone or in combination with lipoteichoic acid (LTA), another staphylococcal microbial-associated molecular pattern (MAMP). MDP induced a prompt and marked influx of neutrophils in milk, and its combination with LTA elicited a more intense and prolonged influx than the responses to either stimulus alone. The concentrations of several chemoattractants for neutrophils (CXCL1, CXCL2, CXCL3, CXCL8, and C5a) increased in milk after challenge, and the highest increases followed challenge with the combination of MDP and LTA. MDP and LTA were also synergistic in inducing in vitro chemokine production by bovine mammary epithelial cells (bMEpC). Nucleotide-binding oligomerization domain 2 (NOD2), a major sensor of MDP, was expressed (mRNA) in bovine mammary tissue and by bMEpC in culture. The production of interleukin-8 (IL-8) following the stimulation of bMEpC by LTA and MDP was dependent on the activation of NF-κB. LTA-induced IL-8 production did not depend on platelet-activating factor receptor (PAFR), as the PAFR antagonist WEB2086 was without effect. In contrast, bMEpC and mammary tissue are known to express Toll-like receptor 2 (TLR2) and to respond to TLR2 agonists. Although the levels of expression of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β were increased by LTA and MDP at the mRNA level, no protein could be detected in the bMEpC culture supernatant. The level of induction of IL-6 was low at both the mRNA and protein levels. These results indicate that MDP and LTA exert synergistic effects to induce neutrophilic inflammation in the mammary gland. These results also show that bMEpC could contribute to the inflammatory response by recognizing LTA and MDP and secreting chemokines but not proinflammatory cytokines. Overall, this study indicates that the TLR2 and NOD2 pathways could cooperate to trigger an innate immune response to S. aureus mastitis.


Cytokine ◽  
2005 ◽  
Vol 31 (1) ◽  
pp. 72-86 ◽  
Author(s):  
Ylva Strandberg ◽  
Christian Gray ◽  
Tony Vuocolo ◽  
Laurelea Donaldson ◽  
Mary Broadway ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Abdelaziz Adam Idriss Arbab ◽  
Xubin Lu ◽  
Ismail Mohamed Abdalla ◽  
Amer Adam Idris ◽  
Zhi Chen ◽  
...  

The objective of this research was to explore the effect of metformin on the lipoteichoic acid (LTA)–induced mastitis model using isolated primary bovine mammary epithelial cells (PBMECs). The PBMECs were exposed to either 3 mM metformin for 12 h as a metformin group (MET) or 100 μg/mL LTA for 6 h as LTA group (LTA). Cells pretreated with 3 mM metformin for 12 h followed by washing and 100 μg/mL LTA exposure for 6 h served as the MET + LTA group. Phosphate-buffered saline was added to cells as the control group. PBMECs pretreated with different metformin doses were analyzed by a flow cytometry (annexin V–fluorescein isothiocyanate assay) to detect the cell apoptotic rate. We performed quantitative reverse transcriptase–polymerase chain reaction and Western blot analysis to evaluate the inflammatory and oxidative responses to metformin and LTA by measuring cellular cytotoxicity, mRNA expression, and protein expression. Immunofluorescence was used to evaluate nuclear localization. The results showed that the gene expression of COX2, IL-1β, and IL-6 significantly increased in the cells challenged with LTA doses compared to control cells. In inflammatory PBMECs, metformin attenuated LTA-induced expression of inflammatory genes nuclear factor κB (NF-κB) p65, tumor necrosis factor α, cyclooxygenase 2, and interleukin 1β, as well as the nuclear localization and phosphorylation of NF-κBp65 protein, but increased the transcription of nuclear factor erythroid 2–related factor 2 (Nrf2) and Nrf2-targeted antioxidative genes heme oxygenase-1 (HO-1) and Gpx1, as well as the nuclear localization of HO-1 protein. Importantly, metformin-induced activation of Nrf2 is AMP-activated protein kinase (AMPK)–dependent; as metformin-pretreated PBMECs activated AMPK signaling via the upregulation of phosphorylated AMPK levels, cell pretreatment with metformin also reversed the translocation of Nrf2 that was LTA inhibited. This convergence between AMPK and Nrf2 pathways is essential for the anti-inflammatory effect of metformin in LTA-stimulated PBMECs. Altogether, our results indicate that metformin exerts anti-inflammation and oxidative stress through regulation of AMPK/Nrf2/NF-κB signaling pathway, which highlights the role of AMPK as a potential therapeutic strategy for treatment of bovine mastitis.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1548
Author(s):  
Sato Kamiya ◽  
Kaori Shimizu ◽  
Ayaka Okada ◽  
Yasuo Inoshima

In this study, to establish whether serum amyloid A (SAA) 3 plays a role in the defense against bacterial infection in mouse mammary epithelium, normal murine mammary gland (NMuMG) epithelial cells were stimulated with lipopolysaccharide (LPS) and lipoteichoic acid (LTA). LPS and LTA significantly enhanced mRNA expression level of the Saa3 gene, whereas no significant change was observed in the Saa1 mRNA level. Furthermore, LPS induced SAA3 protein expression more strongly than LTA, whereas neither LPS nor LTA significantly affected SAA1 protein expression. These data indicate that the expression of SAA3 in mouse mammary epithelial cells was increased by the stimulation with bacterial antigens. SAA3 has been reported to stimulate neutrophils in the intestinal epithelium and increase interleukin-22 expression, which induces activation of the innate immune system and production of antibacterial proteins, such as antimicrobial peptides. Therefore, collectively, these data suggest that SAA3 is involved in the defense against bacterial infection in mouse mammary epithelium.


Author(s):  
Xu Ping ◽  
Tetiana Fotina ◽  
Hanna Fotina ◽  
Sanhu Wang

The mammary gland of the cow is particularly susceptible to infections of a wide range of pathogenic bacteria, including both Gram-positive and Gram-negative bacteria. The endotoxins of these pathogenic bacteria include peptidoglycan (PGN), lipoteichoic acid (LTA) and lipopolysaccharide (LPS), and they are the pathogen-associated molecular patterns (PAMPs) to induce mastitis. Cow mastitis is a detrimental factor in dairy farming industry. Lipoteichoic acid (LTA) is the main component of Staphylococcus aureus cell wall and the key cytotoxic factor causing inflammation. The aims of our work was to establish inflammatory model of study procedures were approved by the Animal Care and Use Committee of the Sumy National Agricultural University, Sumy, Ukraine, and the Henan Institute of Science and Technology, Xinxiang, China, and performed in accordance with the animal welfare and ethics guidelines. The BMECs harvested from mid-lactation dairy cow milk were isolated by our laboratory. Briefly, the base medium for this cell is DMEM/F-12 (Gibco, USA, cat.12400-024). The complete growth medium included 10% fetal bovine serum (Biological Industries, Israel, cat.04-011-1A/B), DMEM/F-12, and 10 ng/mL epidermal growth factor (Sigma, USA, cat. E4127). Cells were maintained at 37℃in an incubator containing 5% CO2. When cells grew to 80% confluency, the cells were rinsed twice with PBS, and then the primary mammary epithelial cells were trypsinized with 0.25% trypsin plus 0.02% EDTA and passaged. In this study, one inflammatory bovine mammary epithelial cell (BMEC) model was established by infecting the cells with LTA. The BMEC viability induced by LTA were evaluated. The expressions of pro-inflammatory cytokines (TNF-α and IL-6) were measured by ELISA and RT- qPCR. The results showed that the treatment of BMECs with LTA at 20 ng/μL for 24 h obviously improved TNF-α and IL-6 protein and gene expression levels. The establishment of the model will play an important role in the screening of anti-inflammatory drugs and the study of the mechanism of action in the future.


Sign in / Sign up

Export Citation Format

Share Document