Antibodies from healthy or paratuberculosis infected cows have different effects on Mycobacterium avium subspecies paratuberculosis invasion in a calf ileal loop model

Author(s):  
Ana Jolly ◽  
Bárbara Fernández ◽  
Ana Stempler ◽  
Giselle Ingratta ◽  
Gabriela Postma ◽  
...  
2009 ◽  
Vol 46 (4) ◽  
pp. 717-728 ◽  
Author(s):  
S. Khare ◽  
J. S. Nunes ◽  
J. F. Figueiredo ◽  
S. D. Lawhon ◽  
C. A. Rossetti ◽  
...  

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of chronic enteritis in ruminants (Johne's disease) and a possible etiopathologic agent in human Crohn's disease. The host-pathogen interaction in this chronic disease has largely depended on the randomly collected static lesions studied in subclinically or clinically infected animals. We have established and utilized the neonatal calf ligated ileal loop model to study the early temporal host changes during MAP infection. After inoculation of ligated ileal loop with MAP, samples were analyzed for bacterial invasion, histologic and ultrastructural morphologic changes, and gene expression at several times (0.5–12 hours) postinfection. Our results indicate that MAP invades the intestinal mucosa as early as 0.5 hour postinoculation. Distribution and migration of neutrophils, monocytes/macrophages, and goblet cells were confirmed by histopathology, scanning and transmission electron microscopy. Coincident with the morphologic analysis, we measured by real-time polymerase chain reaction gene expression of various cytokines/chemokines that are involved in the recruitment of mononuclear and polymorphonuclear leukocytes to the site of infection. We also detected expression of several other genes, including intestinal-trefoil factor, profilin, lactoferrin, and enteric β-defensin, which may play significant roles in the early MAP infection. Thus, the calf ligated intestinal loop model may be used as a human disease model to understand the role of MAP in the pathogenesis of Crohn's disease.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1605
Author(s):  
Annika Wichert ◽  
Esra Einax ◽  
Natalie Hahn ◽  
Anne Klassen ◽  
Karsten Donat

Within paratuberculosis control programs Mycobacterium avium subsp. paratuberculosis (MAP)-infected herds have to be detected with minimum effort but with sufficient reliability. We aimed to evaluate a combination of random sampling (RS) and pooling for the detection of MAP-infected herds, simulating repeated RS in imitated dairy herds (within-herd prevalence 1.0%, 2.0%, 4.3%). Each RS consisted of taking 80 out of 300 pretested fecal samples, and five or ten samples were repeatedly and randomly pooled. All pools containing at least one MAP-positive sample were analyzed by culture and real-time quantitative PCR (qPCR). The pool detection probability was 47.0% or 45.9% for pools of size 5 or 10 applying qPCR and slightly lower using culture. Combining these methods increased the pool detection probability. A positive association between bacterial density in pools and pool detection probability was identified by logistic regression. The herd-level detection probability ranged from 67.3% to 84.8% for pools of size 10 analyzed by both qPCR and culture. Pools of size 10 can be used without significant loss of sensitivity compared with pools of size 5. Analyzing randomly sampled and pooled fecal samples allows the detection of MAP-infected herds, but is not recommended for one-time testing in low prevalence herds.


2007 ◽  
Vol 75 (9) ◽  
pp. 4342-4350 ◽  
Author(s):  
Manuela Raffatellu ◽  
Renato L. Santos ◽  
Daniela Chessa ◽  
R. Paul Wilson ◽  
Sebastian E. Winter ◽  
...  

ABSTRACT The viaB locus contains genes for the biosynthesis and export of the Vi capsular antigen of Salmonella enterica serotype Typhi. Wild-type serotype Typhi induces less CXC chemokine production in tissue culture models than does an isogenic viaB mutant. Here we investigated the in vivo relevance of these observations by determining whether the presence of the viaB region prevents inflammation in two animal models of gastroenteritis. Unlike S. enterica serotype Typhimurium, serotype Typhi or a serotype Typhi viaB mutant did not elicit marked inflammatory changes in the streptomycin-pretreated mouse model. In contrast, infection of bovine ligated ileal loops with a serotype Typhi viaB mutant resulted in more fluid accumulation and higher expression of the chemokine growth-related oncogene alpha (GROα) and interleukin-17 (IL-17) than did infection with the serotype Typhi wild type. There was a marked upregulation of IL-17 expression in both the bovine ligated ileal loop model and the streptomycin-pretreated mouse model, suggesting that this cytokine is an important component of the inflammatory response to infection with Salmonella serotypes. Introduction of the cloned viaB region into serotype Typhimurium resulted in a significant reduction of GROα and IL-17 expression and in reduced fluid secretion. Our data support the idea that the viaB region plays a role in reducing intestinal inflammation in vivo.


Gut Pathogens ◽  
2013 ◽  
Vol 5 (1) ◽  
pp. 18 ◽  
Author(s):  
Paola Molicotti ◽  
Antonio M Scanu ◽  
Aurea Lumbau ◽  
Sara Cannas ◽  
Alessandra Bua ◽  
...  

2008 ◽  
Vol 76 (10) ◽  
pp. 4396-4404 ◽  
Author(s):  
Jorge E. Vidal ◽  
Bruce A. McClane ◽  
Juliann Saputo ◽  
Jaquelyn Parker ◽  
Francisco A. Uzal

ABSTRACT Clostridium perfringens type B and type C isolates, which produce beta-toxin (CPB), cause fatal diseases originating in the intestines of humans or livestock. Our previous studies demonstrated that CPB is necessary for type C isolate CN3685 to cause bloody necrotic enteritis in a rabbit ileal loop model and also showed that purified CPB, in the presence of trypsin inhibitor (TI), can reproduce type C pathology in rabbit ileal loops. We report here a more complete characterization of the effects of purified CPB in the rabbit small and large intestines. One microgram of purified CPB, in the presence of TI, was found to be sufficient to cause significant accumulation of hemorrhagic luminal fluid in duodenal, jejunal, or ileal loops treated for 6 h with purified CPB, while no damage was observed in corresponding loops receiving CPB (no TI) or TI alone. In contrast to the CPB sensitivity of the small intestine, the colon was not affected by 6 h of treatment with even 90 μg of purified CPB whether or not TI was present. Time course studies showed that purified CPB begins to induce small intestinal damage within 1 h, at which time the duodenum is less damaged than the jejunum or ileum. These observations help to explain why type B and C infections primarily involve the small intestine, establish CPB as a very potent and fast-acting toxin in the small intestines, and confirm a key role for intestinal trypsin as an innate intestinal defense mechanism against CPB-producing C. perfringens isolates.


Sign in / Sign up

Export Citation Format

Share Document