The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions

2009 ◽  
Vol 163 (3) ◽  
pp. 217-228 ◽  
Author(s):  
Susan J. Kutz ◽  
Emily J. Jenkins ◽  
Alasdair M. Veitch ◽  
Julie Ducrocq ◽  
Lydden Polley ◽  
...  
2015 ◽  
Vol 18 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Ann Hindley ◽  
Xavier Font

Tourists' perceptions of climate change affect decisions and choices to visit destinations, which are disappearing because of climate change impacts. Values and motivations are two of the personal variables underpinning tourists' decisions. The study addresses both the limited values research in tourism and reveals unconscious motives by using projective techniques. Projective techniques avoid some of the social desirability bias present in much ethical research. Choice ordering technique and the list of values assist by assigning importance, with narrative responses providing meaning. The construction technique builds a story from a stimulus, with photo-elicitation using participants' personal holiday photographs. A sample of pre, during and post visit tourists to the Arctic and Venice were interviewed. Results, which provide a more nuanced understanding of how the personal variables of values and motivations are underpinned by self-interest, inform policies and the messages designed to influence pro-sustainability behaviour.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2571-2576 ◽  
Author(s):  
S.J Kutz ◽  
E.P Hoberg ◽  
L Polley ◽  
E.J Jenkins

Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally.


2013 ◽  
Vol 10 (1) ◽  
pp. 1421-1450 ◽  
Author(s):  
S. Henson ◽  
H. Cole ◽  
C. Beaulieu ◽  
A. Yool

Abstract. The seasonal cycle (i.e. phenology) of oceanic primary production (PP) is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in PP itself. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima) and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming) regions, typically found at high latitudes, into weakly seasonal (non-bloom) regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. We conclude that analysis of phytoplankton phenology is not necessarily a shortcut to detecting climate change impacts on ocean productivity.


2017 ◽  
Vol 21 (1) ◽  
pp. 133-151 ◽  
Author(s):  
Jessica E. Cherry ◽  
Corrie Knapp ◽  
Sarah Trainor ◽  
Andrea J. Ray ◽  
Molly Tedesche ◽  
...  

Abstract. Unlike much of the contiguous United States, new hydropower development continues in the Far North, where climate models project precipitation will likely increase over the next century. Regional complexities in the Arctic and sub-Arctic, such as glacier recession and permafrost thaw, however, introduce uncertainties about the hydrologic responses to climate change that impact water resource management. This work reviews hydroclimate changes in the Far North and their impacts on hydropower; it provides a template for application of current techniques for prediction and estimating uncertainty, and it describes best practices for integrating science into management and decision-making. The growing number of studies on hydrologic impacts suggests that information resulting from climate change science has matured enough that it can and should be integrated into hydropower scoping, design, and management. Continuing to ignore the best available information in lieu of status quo planning is likely to prove costly to society in the long term.


2010 ◽  
Vol 01 (01) ◽  
pp. 59-69 ◽  
Author(s):  
Joseph Santhi Pechsiri ◽  
Amir Sattari ◽  
Paulina Garza Martinez ◽  
Liu Xuan

2021 ◽  
Vol 376 (1837) ◽  
pp. 20200360 ◽  
Author(s):  
Ignacio Morales-Castilla ◽  
Paula Pappalardo ◽  
Maxwell J. Farrell ◽  
A. Alonso Aguirre ◽  
Shan Huang ◽  
...  

Species are shifting their distributions in response to climate change. This geographic reshuffling may result in novel co-occurrences among species, which could lead to unseen biotic interactions, including the exchange of parasites between previously isolated hosts. Identifying potential new host–parasite interactions would improve forecasting of disease emergence and inform proactive disease surveillance. However, accurate predictions of future cross-species disease transmission have been hampered by the lack of a generalized approach and data availability. Here, we propose a framework to predict novel host–parasite interactions based on a combination of niche modelling of future host distributions and parasite sharing models. Using the North American ungulates as a proof of concept, we show this approach has high cross-validation accuracy in over 85% of modelled parasites and find that more than 34% of the host–parasite associations forecasted by our models have already been recorded in the literature. We discuss potential sources of uncertainty and bias that may affect our results and similar forecasting approaches, and propose pathways to generate increasingly accurate predictions. Our results indicate that forecasting parasite sharing in response to shifts in host geographic distributions allow for the identification of regions and taxa most susceptible to emergent pathogens under climate change. This article is part of the theme issue ‘Infectious disease macroecology: parasite diversity and dynamics across the globe’.


2018 ◽  
Vol 79 ◽  
pp. 45-53 ◽  
Author(s):  
Melanie Flynn ◽  
James D. Ford ◽  
Tristan Pearce ◽  
Sherilee L. Harper

Sign in / Sign up

Export Citation Format

Share Document