Climate Change Impacts to Fisheries and Habitat in the Pacific and the Arctic

Author(s):  
Janis Searles Jones ◽  
Ivy Fredrickson ◽  
Adena Leibman
2021 ◽  
Vol 2 (53) ◽  
Author(s):  
Bronwyn Powell ◽  
Sarah Ransom

Looking back on COP26, we argue that there is power in telling stories about adaptation to water-related climate change impacts in Australia and the Pacific.


Author(s):  
Cynthia Rosenzweig ◽  
Daniel Hillel

The climate system envelops our planet, with swirling fluxes of mass, momentum, and energy through air, water, and land. Its processes are partly regular and partly chaotic. The regularity of diurnal and seasonal fluctuations in these processes is well understood. Recently, there has been significant progress in understanding some of the mechanisms that induce deviations from that regularity in many parts of the globe. These mechanisms include a set of combined oceanic–atmospheric phenomena with quasi-regular manifestations. The largest of these is centered in the Pacific Ocean and is known as the El Niño–Southern Oscillation. The term “oscillation” refers to a shifting pattern of atmospheric pressure gradients that has distinct manifestations in its alternating phases. In the Arctic and North Atlantic regions, the occurrence of somewhat analogous but less regular interactions known as the Arctic Oscillation and its offshoot, the North Atlantic Oscillation, are also being studied. These and other major oscillations influence climate patterns in many parts of the globe. Examples of other large-scale interactive ocean–atmosphere– land processes are the Pacific Decadal Oscillation, the Madden-Julian Oscillation, the Pacific/North American pattern, the Tropical Atlantic Variability, the West Pacific pattern, the Quasi-Biennial Oscillation, and the Indian Ocean Dipole. In this chapter we review the earth’s climate system in general, define climate variability, and describe the processes related to ENSO and the other major systems and their interactions. We then consider the possible connections of the major climate variability systems to anthropogenic global climate change. The climate system consists of a series of fluxes and transformations of energy (radiation, sensible and latent heat, and momentum), as well as transports and changes in the state of matter (air, water, solid matter, and biota) as conveyed and influenced by the atmosphere, the ocean, and the land masses. Acting like a giant engine, this dynamic system is driven by the infusion, transformation, and redistribution of energy.


2019 ◽  
Vol 28 (2) ◽  
pp. 196-218 ◽  
Author(s):  
Carola Klöck ◽  
Patrick D. Nunn

Small Island Developing States (SIDS) share a common vulnerability to climate change. Adaptation to climate change and variability is urgently needed yet, while some is already occurring in SIDS, research on the nature and efficacy of adaptation across SIDS is fragmentary. In this article, we systematically review academic literature to identify where adaptation in SIDS is documented; what type of adaptation strategies are taken, and in response to which climate change impacts; and the extent to which this adaptation has been judged as successful. Our analysis indicates that much adaptation research is concentrated on the Pacific, on independent island states, and on core areas within SIDS. Research documents a wide array of adaptation strategies across SIDS, notably structural or physical and behavioral changes. Yet, evaluation of concrete adaptation interventions is lacking; it thus remains unclear to what extent documented adaptation effectively and sustainably reduces SIDS’ vulnerability and increases their resilience.


2015 ◽  
Vol 18 (1) ◽  
pp. 3-14 ◽  
Author(s):  
Ann Hindley ◽  
Xavier Font

Tourists' perceptions of climate change affect decisions and choices to visit destinations, which are disappearing because of climate change impacts. Values and motivations are two of the personal variables underpinning tourists' decisions. The study addresses both the limited values research in tourism and reveals unconscious motives by using projective techniques. Projective techniques avoid some of the social desirability bias present in much ethical research. Choice ordering technique and the list of values assist by assigning importance, with narrative responses providing meaning. The construction technique builds a story from a stimulus, with photo-elicitation using participants' personal holiday photographs. A sample of pre, during and post visit tourists to the Arctic and Venice were interviewed. Results, which provide a more nuanced understanding of how the personal variables of values and motivations are underpinned by self-interest, inform policies and the messages designed to influence pro-sustainability behaviour.


2013 ◽  
Vol 10 (1) ◽  
pp. 1421-1450 ◽  
Author(s):  
S. Henson ◽  
H. Cole ◽  
C. Beaulieu ◽  
A. Yool

Abstract. The seasonal cycle (i.e. phenology) of oceanic primary production (PP) is expected to change in response to climate warming. Here, we use output from 6 global biogeochemical models to examine the response in the seasonal amplitude of PP and timing of peak PP to the IPCC AR5 warming scenario. We also investigate whether trends in PP phenology may be more rapidly detectable than trends in PP itself. The seasonal amplitude of PP decreases by an average of 1–2% per year by 2100 in most biomes, with the exception of the Arctic which sees an increase of ~1% per year. This is accompanied by an advance in the timing of peak PP by ~0.5–1 months by 2100 over much of the globe, and particularly pronounced in the Arctic. These changes are driven by an increase in seasonal amplitude of sea surface temperature (where the maxima get hotter faster than the minima) and a decrease in the seasonal amplitude of the mixed layer depth and surface nitrate concentration. Our results indicate a transformation of currently strongly seasonal (bloom forming) regions, typically found at high latitudes, into weakly seasonal (non-bloom) regions, characteristic of contemporary subtropical conditions. On average, 36 yr of data are needed to detect a climate change-driven trend in the seasonal amplitude of PP, compared to 32 yr for mean annual PP. We conclude that analysis of phytoplankton phenology is not necessarily a shortcut to detecting climate change impacts on ocean productivity.


Author(s):  
Celia McMichael ◽  
Carol Farbotko ◽  
Karen E. McNamara

There is widespread understanding that migration can represent an adaptive response to emerging and realized climate threats. However, the concept of “migration as adaptation” positions vulnerable populations as adaptive agents who can and even must migrate in response to climate change impacts, despite their often negligible contribution to greenhouse gas emissions. The Pacific islands region is widely viewed as an iconic site of climate change impacts and subsequent climate migration risk. This chapter discusses three Pacific countries—Fiji, Tuvalu, and Kiribati—and explores how people and government officials in these countries respond to the dynamic discursive, policy, social, and biophysical domains of “migration as climate change adaptation.”


Author(s):  
Julie A. Vano ◽  
Meghan M. Dalton

We outline a new method that offers quick insights into how the amount of water in rivers and streams will be impacted by warmer temperatures and future precipitation change. This method yields comparable results to more conventional model-intense climate change impact studies and is faster and cheaper to implement, making it a practical alternative for those exploring future water supply changes in places with limited computational access. Using rivers and streams in the Pacific Northwest of North America as an example, we share what this new method can (and cannot) do, and highlight the steps one could take to quickly begin exploring how climate change could impact their water supply.


2017 ◽  
Vol 21 (1) ◽  
pp. 133-151 ◽  
Author(s):  
Jessica E. Cherry ◽  
Corrie Knapp ◽  
Sarah Trainor ◽  
Andrea J. Ray ◽  
Molly Tedesche ◽  
...  

Abstract. Unlike much of the contiguous United States, new hydropower development continues in the Far North, where climate models project precipitation will likely increase over the next century. Regional complexities in the Arctic and sub-Arctic, such as glacier recession and permafrost thaw, however, introduce uncertainties about the hydrologic responses to climate change that impact water resource management. This work reviews hydroclimate changes in the Far North and their impacts on hydropower; it provides a template for application of current techniques for prediction and estimating uncertainty, and it describes best practices for integrating science into management and decision-making. The growing number of studies on hydrologic impacts suggests that information resulting from climate change science has matured enough that it can and should be integrated into hydropower scoping, design, and management. Continuing to ignore the best available information in lieu of status quo planning is likely to prove costly to society in the long term.


Sign in / Sign up

Export Citation Format

Share Document