scholarly journals Corrigendum to “Respiratory syncytial virus nonstructural protein 2 specifically inhibits type I interferon signal transduction” [Virology 344 (2006) 328–339]

Virology ◽  
2007 ◽  
Vol 366 (2) ◽  
pp. 453
Author(s):  
Murali Ramaswamy ◽  
Lei Shi ◽  
Steven M. Varga ◽  
Sailen Barik ◽  
Mark A. Behlke ◽  
...  
Virology ◽  
2006 ◽  
Vol 344 (2) ◽  
pp. 328-339 ◽  
Author(s):  
Murali Ramaswamy ◽  
Lei Shi ◽  
Steven M. Varga ◽  
Sailen Barik ◽  
Mark A. Behlke ◽  
...  

2004 ◽  
Vol 30 (6) ◽  
pp. 893-900 ◽  
Author(s):  
Murali Ramaswamy ◽  
Lei Shi ◽  
Martha M. Monick ◽  
Gary W. Hunninghake ◽  
Dwight C. Look

Respiration ◽  
1995 ◽  
Vol 62 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Elke Weber ◽  
Barbara Humbert ◽  
Hans-Jürgen Streckert ◽  
Hermann Werchau

2008 ◽  
Vol 82 (17) ◽  
pp. 8780-8796 ◽  
Author(s):  
Shirin Munir ◽  
Cyril Le Nouen ◽  
Cindy Luongo ◽  
Ursula J. Buchholz ◽  
Peter L. Collins ◽  
...  

ABSTRACT Human respiratory syncytial virus (RSV) is the most important agent of serious pediatric respiratory tract disease worldwide. One of the main characteristics of RSV is that it readily reinfects and causes disease throughout life without the need for significant antigenic change. The virus encodes nonstructural protein 1 (NS1) and NS2, which are known to suppress type I interferon (IFN) production and signaling. In the present study, we monitored the maturation of human monocyte-derived myeloid dendritic cells (DC) following inoculation with recombinant RSVs bearing deletions of the NS1 and/or NS2 proteins and expressing enhanced green fluorescent protein. Deletion of the NS1 protein resulted in increased expression of cell surface markers of DC maturation and an increase in the expression of multiple cytokines and chemokines. This effect was enhanced somewhat by further deletion of the NS2 protein, although deletion of NS2 alone did not have a significant effect. The upregulation was largely inhibited by pretreatment with a blocking antibody against the type I IFN receptor, suggesting that suppression of DC maturation by NS1/2 is, at least in part, a result of IFN antagonism mediated by these proteins. Therefore, this study identified another effect of the NS1 and NS2 proteins. The observed suppression of DC maturation may result in decreased antigen presentation and T-lymphocyte activation, leading to incomplete and/or weak immune responses that might contribute to RSV reinfection.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Maria Ansar ◽  
Yue Qu ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Respiratory syncytial virus (RSV) infection in mouse and human lung is associated with pathogenic inflammation and oxidative injury. RSV impairs antioxidant responses by increasing the degradation of transcription factor NF-E2-related factor 2 (NRF2), which controls the expression of several antioxidant enzymes (AOEs). In addition to its protective effects, type I IFNs have been increasingly recognized as important mediators of host pathogenic responses during acute respiratory viral infections. We used a mouse model of RSV infection to investigate the effect of lack of type I interferon (IFN) receptor on viral-mediated clinical disease, airway inflammation, NRF2 expression, and antioxidant defenses. In the absence of type I IFN signaling, RSV-infected mice showed significantly less body weight loss and airway obstruction, as well as a significant reduction in cytokine and chemokine secretion and airway inflammation. Lack of type I IFN receptor was associated with greatly reduced virus-induced promyelocytic leukemia lung protein expression, which we showed to be necessary for virus-induced NRF2 degradation in a cell model of infection, resulting in restoration of NRF2 levels, AOE expression, and airway antioxidant capacity. Our data support the concept that modulation of type I IFN production and/or signaling could represent an important therapeutic strategy to ameliorate severity of RSV-induced lung disease.


2021 ◽  
Vol 118 (10) ◽  
pp. e2020587118
Author(s):  
Jingjing Pei ◽  
Nicole D. Wagner ◽  
Angela J. Zou ◽  
Srirupa Chatterjee ◽  
Dominika Borek ◽  
...  

Human respiratory syncytial virus (RSV) nonstructural protein 2 (NS2) inhibits host interferon (IFN) responses stimulated by RSV infection by targeting early steps in the IFN-signaling pathway. But the molecular mechanisms related to how NS2 regulates these processes remain incompletely understood. To address this gap, here we solved the X-ray crystal structure of NS2. This structure revealed a unique fold that is distinct from other known viral IFN antagonists, including RSV NS1. We also show that NS2 directly interacts with an inactive conformation of the RIG-I–like receptors (RLRs) RIG-I and MDA5. NS2 binding prevents RLR ubiquitination, a process critical for prolonged activation of downstream signaling. Structural analysis, including by hydrogen-deuterium exchange coupled to mass spectrometry, revealed that the N terminus of NS2 is essential for binding to the RIG-I caspase activation and recruitment domains. N-terminal mutations significantly diminish RIG-I interactions and result in increased IFNβ messenger RNA levels. Collectively, our studies uncover a previously unappreciated regulatory mechanism by which NS2 further modulates host responses and define an approach for targeting host responses.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Diego R. Hijano ◽  
David T. Siefker ◽  
Bishwas Shrestha ◽  
Sridhar Jaligama ◽  
Luan D. Vu ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 730 ◽  
Author(s):  
Tae Hoon Kim ◽  
Dong Sun Oh ◽  
Hi Eun Jung ◽  
Jun Chang ◽  
Heung Kyu Lee

Respiratory syncytial virus (RSV) is the leading cause of respiratory viral infection in infants and children, yet little is known about the antiviral response of plasmacytoid dendritic cells (pDCs) to RSV infection. We tracked the cellular source of interferon-β using interferon-β/yellow fluorescent protein (YFP) reporter mice and identified the signaling pathway activated by RSV that induces type I interferon production in pDCs and DCs. Results from in vitro analyses of RSV-stimulated bone marrow cells revealed that RSV induces interferon-β production in both pDCs and DCs. Kinetic analyses of interferon-β-producing cells in RSV-infected lung cells in vivo indicated that pDCs are rapidly recruited to sites of inflammation during infection. These cells produced interferon-β via the TLR7-MyD88-mediated pathway and IFNα1R-mediated pathway rather than the MAVS-mediated pathway. Moreover, pDC-ablated mice exhibited decreased interferon-γ production and the antigen specificity of CD8+ T cells. Collectively, these data indicate that pDCs play pivotal roles in cytotoxic T lymphocyte (CTL) responses and are one of producers of type I interferon during RSV infection.


Sign in / Sign up

Export Citation Format

Share Document