scholarly journals Epithelial boost enhances antigen expression by vaccinia virus for the generation of potent CD8+ T cell-mediated antitumor immunity following DNA priming vaccination

Virology ◽  
2018 ◽  
Vol 525 ◽  
pp. 205-215 ◽  
Author(s):  
Jin Qiu ◽  
Shiwen Peng ◽  
Ying Ma ◽  
Andrew Yang ◽  
Emily Farmer ◽  
...  
2007 ◽  
Vol 15 (8) ◽  
pp. 1558-1563 ◽  
Author(s):  
Chung Kil Song ◽  
Hee Dong Han ◽  
Kyung Hee Noh ◽  
Tae Heung Kang ◽  
Yong Sung Park ◽  
...  

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


2010 ◽  
Vol 84 (17) ◽  
pp. 8743-8752 ◽  
Author(s):  
Karen Baur ◽  
Kay Brinkmann ◽  
Marc Schweneker ◽  
Juliane Pätzold ◽  
Christine Meisinger-Henschel ◽  
...  

ABSTRACT Efficient T-cell responses against recombinant antigens expressed by vaccinia virus vectors require expression of these antigens in the early phase of the virus replication cycle. The kinetics of recombinant gene expression in poxviruses are largely determined by the promoter chosen. We used the highly attenuated modified vaccinia virus Ankara (MVA) to determine the role of promoters in the induction of CD8 T-cell responses. We constructed MVA recombinants expressing either enhanced green fluorescent protein (EGFP) or chicken ovalbumin (OVA), each under the control of a hybrid early-late promoter (pHyb) containing five copies of a strong early element or the well-known early-late p7.5 or pS promoter for comparison. In primary or cultured cells, EGFP expression under the control of pHyb was detected within 30 min, as an immediate-early protein, and remained higher over the first 6 h of infection than p7.5- or pS-driven EGFP expression. Repeated immunizations of mice with recombinant MVA expressing OVA under the control of the pHyb promoter led to superior acute and memory CD8 T-cell responses compared to those to p7.5- and pS-driven OVA. Moreover, OVA expressed under the control of pHyb replaced the MVA-derived B8R protein as the immunodominant CD8 T-cell antigen after three or more immunizations. This is the first demonstration of an immediate-early neoantigen expressed by a poxviral vector resulting in superior induction of neoantigen-specific CD8 T-cell responses.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2010 ◽  
Vol 84 (12) ◽  
pp. 5898-5908 ◽  
Author(s):  
Maximillian Rosario ◽  
Richard Hopkins ◽  
John Fulkerson ◽  
Nicola Borthwick ◽  
Máire F. Quigley ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 414 ◽  
Author(s):  
María Q. Marín ◽  
Patricia Pérez ◽  
Carmen E. Gómez ◽  
Carlos Óscar S. Sorzano ◽  
Mariano Esteban ◽  
...  

Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8+ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8+ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8+ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A705-A705
Author(s):  
Shuyang Qin ◽  
Booyeon Han ◽  
Alexander Chacon ◽  
Alexa Melucci ◽  
Alyssa Williams ◽  
...  

BackgroundDespite recent advancements in systemic therapy, only a minority of metastatic patients develop meaningful clinical responses to immune checkpoint inhibitors. Inherent genetic instability of melanoma generates genomically and microenvironmentally distinct metastases. These different tumor microenvironments (TMEs) contain numerous T cell suppression mechanisms, such as upregulation of the PD-1/PD-L1 exhaustion pathway. However, as synchronous metastases share one host immune system, intertumoral heterogeneity may result in increasing cross-talk between metastases that impairs systemic antitumor immunity and promotes PD-1 immunotherapy resistance.MethodsYUMM 1.7 (less immunogenic) and YUMMER 1.7 (more immunogenic cell line derived from YUMM following UVB irradiation) melanoma cell lines were simultaneously injected into opposite flanks of the same mice as a model of synchronous melanoma. We assessed tumor growth in wildtype, interferon-gamma (IFN-γ) knockout, and CD8-depleted mice as well as in response to PD-1 inhibitor. We characterized the TME with flow cytometry and performed TCR sequencing on tumor-infiltrating CD8 T cells.ResultsDistinct TMEs were observed for YUMM and YUMMER tumors simultaneously grown in the same mouse. The presence of the less immunogenic YUMM tumor allows the more immunogenic YUMMER tumors to escape IFN-γ and CD8 T cell-mediated rejection, despite abundant tumor-infiltrating, clonally expanded CD8 T cells. Identical immunodominant CD8 T cell clones were found in both YUMM and YUMMER tumors within the same mouse. Synchronous YUMMER-infiltrating CD8 T cells exhibit suppressed phenotypes, including increased persistence of surface PD-1 and decreased surface CD107a expressions. Simultaneously, these synchronous YUMMER tumors additionally upregulate macrophage surface PD-L1 expression, which potentially contributes to tumor immune escape. Lastly, synchronous YUMMER tumors become resistant to PD-1 inhibition, in direct contrast to control YUMMER tumors.ConclusionsIn a host with multiple melanoma lesions, immunogenicity of all tumors contribute to the systemic antitumor immune response. We show that two synchronous tumors with synonymous mutations (<40%), as is the case with metastatic patients, lead to skewed CD8 T cell expansion of the same clones in both tumors. The presence of a less immunogenic tumor prevents CD8 and IFN-γ mediated rejection of the more immunogenic tumor. Furthermore, CD8 T cells in the more immunogenic tumor exhibit decreased effector function and increased resistance to PD-1 blockade, as tumor-infiltrating macrophages concurrently become more immunosuppressive. These results are highly suggestive of a “reverse abscopal effect,” by which immunologically “cold” tumors generate systemic immunosuppression that facilitate PD-1 immunotherapy resistance and immune escape of all other tumors in synchronous metastatic melanoma patients.AcknowledgementsWe would like to thank Dr. Marcus Bosenberg from the Department of Dermatology at Yale University for kindly gifting us with the YUMMER 1.7 murine melanoma cell line.Ethics ApprovalAnimal experiments were approved by the University Committee on Animal Resources and performed in accordance with University of Rochester approved guidelines.


2020 ◽  
Vol 8 (5) ◽  
pp. 587-595 ◽  
Author(s):  
Katie E. Hurst ◽  
Kiley A. Lawrence ◽  
Rob A. Robino ◽  
Lauren E. Ball ◽  
Dongjun Chung ◽  
...  
Keyword(s):  
T Cell ◽  

2011 ◽  
Vol 79 (5) ◽  
pp. 2131-2131
Author(s):  
Arturo Reyes-Sandoval ◽  
Tamara Berthoud ◽  
Nicola Alder ◽  
Loredana Siani ◽  
Sarah C. Gilbert ◽  
...  

1992 ◽  
Vol 89 (13) ◽  
pp. 6070-6074 ◽  
Author(s):  
M. K. Spriggs ◽  
B. H. Koller ◽  
T. Sato ◽  
P. J. Morrissey ◽  
W. C. Fanslow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document