GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against virulent PRRSV challenge

2009 ◽  
Vol 143 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Xinglong Wang ◽  
Junxing Li ◽  
Ping Jiang ◽  
Yufeng Li ◽  
Basit Zeshan ◽  
...  
2015 ◽  
Vol 168 (1-2) ◽  
pp. 40-48 ◽  
Author(s):  
Zhijun Li ◽  
Gang Wang ◽  
Yan Wang ◽  
Chong Zhang ◽  
Baicheng Huang ◽  
...  

2010 ◽  
Vol 17 (4) ◽  
pp. 503-512 ◽  
Author(s):  
Hyun-Jeong Jeong ◽  
Young-Jo Song ◽  
Sang-Won Lee ◽  
Joong-Bok Lee ◽  
Seung-Yong Park ◽  
...  

ABSTRACT The principal objectives of this study were to develop autologous antigen-presenting cells (APCs) and to characterize the antigen-specific T-cell responses to the M and N proteins of porcine reproductive and respiratory syndrome virus (PRRSV) by using those APCs in outbred pigs. The orf6 and orf7 genes fused with porcine granulocyte-macrophage colony-stimulating factor (GM-CSF) were cloned into the mammalian expression vector to generate two plasmid DNAs, namely, pcDNA3.1-GM-CSF-PRRSV-M and pcDNA3.1-GM-CSF-PRRSV-N. Three of six pigs in two groups were repeatedly immunized with either plasmid DNA construct, and four pigs were used as controls. The recombinant M and N proteins fused with the protein transduction domain (PTD) of the human immunodeficiency virus type 1 transactivator of transcription protein were employed to generate major histocompatibility complex-matched autologous APCs from each pig. The levels of T-cell proliferation and gamma interferon (IFN-γ) synthesis were compared between pigs immunized with the two plasmid DNAs after stimulation of the peripheral blood mononuclear cells (PBMCs) of each pig with the autologous antigen-presenting dendritic cells and PBMCs. Higher levels of T-cell proliferation and IFN-γ synthesis were identified in PBMCs isolated from the pigs immunized with pcDNA3.1-GM-CSF-PRRSV-M than in those isolated from the pigs immunized with pcDNA3.1-GM-CSF-PRRSV-N. By way of contrast, serum antibodies were detected only in pigs immunized with pcDNA3.1-GM-CSF-PRRSV-N. However, no T-cell response or antibody production was detected in the control pigs. These results suggest that the M protein of PRRSV is a more potent T cell-stimulating antigen than the N protein. Nevertheless, it should be emphasized that the N protein substantially induces both cellular and humoral immune responses. The newly developed protocol for generating self APCs may prove effective in further efforts to characterize additional PRRSV proteins involved in the induction of cell-mediated immunity.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 46
Author(s):  
Shafiqul I. Chowdhury ◽  
Katrin Pannhorst ◽  
Neha Sangewar ◽  
Selvaraj Pavulraj ◽  
Xue Wen ◽  
...  

The bovine respiratory disease complex (BRDC) remains a major problem for both beef and dairy cattle industries worldwide. BRDC frequently involves an initial viral respiratory infection resulting in immunosuppression, which creates a favorable condition for fatal secondary bacterial infection. Current polyvalent modified live vaccines against bovine herpesvirus type 1(BoHV-1) and bovine viral diarrhea virus (BVDV) have limitations concerning their safety and efficacy. To address these shortcomings and safety issues, we have constructed a quadruple gene mutated BoHV-1 vaccine vector (BoHV-1 QMV), which expresses BVDV type 2, chimeric E2 and Flag-tagged Erns-fused with bovine granulocyte monocyte colony-stimulating factor (GM-CSF) designated here as QMV-BVD2*. Here we compared the safety, immunogenicity, and protective efficacy of QMV-BVD2* vaccination in calves against BVDV-2 with Zoetis Bovi-shield Gold 3 trivalent (BoHV-1, BVDV types 1 and 2) vaccine. The QMV-BVD2* prototype subunit vaccine induced the BoHV-1 and BVDV-2 neutralizing antibody responses along with BVDV-1 and -2 cross-reactive cellular immune responses. Moreover, after a virulent BVDV-2 challenge, the QMV-BVD2* prototype subunit vaccine conferred a more rapid recall BVDV-2-specific neutralizing antibody response and considerably better recall BVDV types 1 and 2-cross protective cellular immune responses than that of the Zoetis Bovi-shield Gold 3.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd4235
Author(s):  
P. Pradhan ◽  
R. Toy ◽  
N. Jhita ◽  
A. Atalis ◽  
B. Pandey ◽  
...  

Innate immune responses to pathogens are driven by co-presentation of multiple pathogen-associated molecular patterns (PAMPs). Combinations of PAMPs can trigger synergistic immune responses, but the underlying molecular mechanisms of synergy are poorly understood. Here, we used synthetic particulate carriers co-loaded with monophosphoryl lipid A (MPLA) and CpG as pathogen-like particles (PLPs) to dissect the signaling pathways responsible for dual adjuvant immune responses. PLP-based co-delivery of MPLA and CpG to GM-CSF–driven mouse bone marrow–derived antigen-presenting cells (BM-APCs) elicited synergistic interferon-β (IFN-β) and interleukin-12p70 (IL-12p70) responses, which were strongly influenced by the biophysical properties of PLPs. Mechanistically, we found that MyD88 and interferon regulatory factor 5 (IRF5) were necessary for IFN-β and IL-12p70 production, while TRIF signaling was required for the synergistic response. Both the kinetics and magnitude of downstream TRAF6 and IRF5 signaling drove the synergy. These results identify the key mechanisms of synergistic Toll-like receptor 4 (TLR4)–TLR9 co-signaling in mouse BM-APCs and underscore the critical role of signaling kinetics and biophysical properties on the integrated response to combination adjuvants.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mandi Liu ◽  
Yue Zhang ◽  
Di Zhang ◽  
Yun Bai ◽  
Guomei Liu ◽  
...  

AbstractEnterotoxigenic Escherichia coli (ETEC), an essential cause of post-weaning diarrhea (PWD) in piglets, leads to significant economic losses to the pig industry. The present study aims to identify the role of ETEC total RNA in eliciting immune responses to protect animals against ETEC infection. The results showed that the total RNA isolated from pig-derived ETEC K88ac strain effectively stimulated the IL-1β secretion of porcine intestinal epithelial cells (IPEC-J2). The mouse model immunized with ETEC total RNA via intramuscular injection (IM) or oral route (OR) was used to evaluate the protective efficiency of the ETEC total RNA. The results suggested that 70 μg ETEC total RNA administered by either route significantly promoted the production of the serum IL-1β and K88ac specific immunoglobulins (IgG, IgM, and IgA). Besides, the ETEC RNA administration augmented strong mucosal immunity by elevating K88ac specific IgA level in the intestinal fluid. Intramuscularly administered RNA induced a Th1/Th2 shift toward a Th2 response, while the orally administered RNA did not. The ETEC total RNA efficiently protected the animals against the ETEC challenge either by itself or as an adjuvant. The histology characterization of the small intestines also suggested the ETEC RNA administration protected the small intestinal structure against the ETEC infection. Particularly of note was that the immunity level and protective efficacy caused by ETEC RNA were dose-dependent. These findings will help understand the role of bacterial RNA in eliciting immune responses, and benefit the development of RNA-based vaccines or adjuvants.


2001 ◽  
Vol 10 (3) ◽  
pp. 161-167 ◽  
Author(s):  
R. E. Hunger ◽  
C. U. Brand ◽  
M. Streit ◽  
J. A. Eriksen ◽  
M. K. Gjertsen ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Honglei Wang ◽  
Yangyang Xu ◽  
Wenhai Feng

Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.


Sign in / Sign up

Export Citation Format

Share Document