Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

2012 ◽  
Vol 32 (6) ◽  
pp. 1075-1090 ◽  
Author(s):  
D. Briassoulis ◽  
M. Hiskakis ◽  
E. Babou ◽  
S.K. Antiohos ◽  
C. Papadi
2021 ◽  
Vol 126 ◽  
pp. 141-151
Author(s):  
Mingjie Xu ◽  
Yu Zhang ◽  
Yahui Li ◽  
Minghuan Lv ◽  
Shikun Zhu ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 691
Author(s):  
Aida Mérida García ◽  
Juan Antonio Rodríguez Díaz ◽  
Jorge García Morillo ◽  
Aonghus McNabola

The use of micro-hydropower (MHP) for energy recovery in water distribution networks is becoming increasingly widespread. The incorporation of this technology, which offers low-cost solutions, allows for the reduction of greenhouse gas emissions linked to energy consumption. In this work, the MHP energy recovery potential in Spain from all available wastewater discharges, both municipal and private industrial, was assessed, based on discharge licenses. From a total of 16,778 licenses, less than 1% of the sites presented an MHP potential higher than 2 kW, with a total power potential between 3.31 and 3.54 MW. This total was distributed between industry, fish farms and municipal wastewater treatment plants following the proportion 51–54%, 14–13% and 35–33%, respectively. The total energy production estimated reached 29 GWh∙year−1, from which 80% corresponded to sites with power potential over 15 kW. Energy-related industries, not included in previous investigations, amounted to 45% of the total energy potential for Spain, a finding which could greatly influence MHP potential estimates across the world. The estimated energy production represented a potential CO2 emission savings of around 11 thousand tonnes, with a corresponding reduction between M€ 2.11 and M€ 4.24 in the total energy consumption in the country.


Author(s):  
A. G. Agwu Nnanna ◽  
Erik Rolfs ◽  
James Taylor ◽  
Karla Ariadny Freitas Ferreira

Design and development of energy efficient vehicles is of paramount importance to the automobile industry. Energy efficiency can be enhanced through recovery of the kinetic energy lost in the form of waste heat during braking. The kinetic energy could be converted into a reusable energy source and aid in acceleration, hence the braking system would contribute to improving the overall efficiency of a vehicle. Hydraulic-Pneumatic Regenerative Braking (HPRB) systems are a hybrid drive system that works in tandem with a vehicle’s engine and drivetrain to improve efficiency and fuel-economy. A HPRB system functions by recovering the energy typically lost to heat during vehicle braking, and storing this energy as a reusable source that can propel a vehicle from a stop. The major advantages of a HPRB system are that a vehicle would not require its engine to run during braking to stop, nor would the engine be required to accelerate the vehicle initially from a stop. The benefit realized by this system is an increase in fuel-efficiency, reduced vehicle emissions, and overall financial savings. An HPRB system aids in slowing a vehicle by creating a drag on the driveline as it recovers and stores energy during braking. Therefore, HPRB system operation reduces wear by minimizing the amount of work performed by the brake pads and rotors. An experimental investigation of Hydraulic-Pneumatic Regenerative Braking (HPRB) system was conducted to measure the system’s overall efficiency and available power output. The HPRB in this study is a 1/10th lab-scale model of a light-duty four wheel vehicle. The design/size was based on a 3500 lbs light-duty four wheel vehicle with an estimated passenger weight of 500 lbs. It was assumed that the vehicle can accelerate from 0–15 mph in 2 seconds. The aim of this work is to examine the effect of heat losses due to irreversibility on energy recovery. The experimental facility consisted of a hydraulic pump, two hydraulic-pneumatic accumulators, solenoid and relief valves, and data acquisition system. The HPRB system did not include any driveline components necessary to attach this system onto a vehicle’s chassis rather an electric motor was used to drive the pump and simulate the power input to the system from a spinning drive shaft. Pressure transducers, Hall effects sensor, and thermocouples were installed at suction and discharge sections of the hydraulic and pneumatic components to measure hydrodynamic and thermos-physical properties. The measured data were used to determine the system’s energy recovery and power delivery efficiency. Results showed that the HPRB system is capable of recovering 47% of the energy input to the system during charging, and 64% efficient in power output during discharging with an input and output of 0.33 and 0.21 horsepower respectively. Inefficiencies during operation were attributed to heat generation from the gear pump but especially due to the piston accumulator, where heat loss attributed to a 12% reduction in energy potential alone.


2019 ◽  
Vol 105 ◽  
pp. 545-554 ◽  
Author(s):  
Mingxia Liu ◽  
Fei Ma ◽  
Gengrong Chang ◽  
Fuxing Fu ◽  
N. Sastry Cheruvu ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4710 ◽  
Author(s):  
Lincoln Bowen ◽  
Jordi Vinolas ◽  
José Luis Olazagoitia

Numerous authors have studied Energy Harvesting Shock Absorbers (EHSA) over the last decade, proposing different designs with diverse geometries, parameters, and components. This article analyzes the energy recovery potential of two types of rotational EHSA, those that use ball-screw and those based on cable transmission. This paper presents the design, manufacturing and mathematical modeling of both options as well as the estimation of the potential power recovery with both technologies. Two types of vehicles are used as references, each one with the characteristic curves of their shock absorbers. Results are presented for different vehicle speeds and road types. Finally, some qualitative characteristics of both EHSAs are detailed to be taken into consideration for their possible use in vehicle suspension.


Sign in / Sign up

Export Citation Format

Share Document