Experimental Investigation of Hydraulic-Pneumatic Regenerative Braking System

Author(s):  
A. G. Agwu Nnanna ◽  
Erik Rolfs ◽  
James Taylor ◽  
Karla Ariadny Freitas Ferreira

Design and development of energy efficient vehicles is of paramount importance to the automobile industry. Energy efficiency can be enhanced through recovery of the kinetic energy lost in the form of waste heat during braking. The kinetic energy could be converted into a reusable energy source and aid in acceleration, hence the braking system would contribute to improving the overall efficiency of a vehicle. Hydraulic-Pneumatic Regenerative Braking (HPRB) systems are a hybrid drive system that works in tandem with a vehicle’s engine and drivetrain to improve efficiency and fuel-economy. A HPRB system functions by recovering the energy typically lost to heat during vehicle braking, and storing this energy as a reusable source that can propel a vehicle from a stop. The major advantages of a HPRB system are that a vehicle would not require its engine to run during braking to stop, nor would the engine be required to accelerate the vehicle initially from a stop. The benefit realized by this system is an increase in fuel-efficiency, reduced vehicle emissions, and overall financial savings. An HPRB system aids in slowing a vehicle by creating a drag on the driveline as it recovers and stores energy during braking. Therefore, HPRB system operation reduces wear by minimizing the amount of work performed by the brake pads and rotors. An experimental investigation of Hydraulic-Pneumatic Regenerative Braking (HPRB) system was conducted to measure the system’s overall efficiency and available power output. The HPRB in this study is a 1/10th lab-scale model of a light-duty four wheel vehicle. The design/size was based on a 3500 lbs light-duty four wheel vehicle with an estimated passenger weight of 500 lbs. It was assumed that the vehicle can accelerate from 0–15 mph in 2 seconds. The aim of this work is to examine the effect of heat losses due to irreversibility on energy recovery. The experimental facility consisted of a hydraulic pump, two hydraulic-pneumatic accumulators, solenoid and relief valves, and data acquisition system. The HPRB system did not include any driveline components necessary to attach this system onto a vehicle’s chassis rather an electric motor was used to drive the pump and simulate the power input to the system from a spinning drive shaft. Pressure transducers, Hall effects sensor, and thermocouples were installed at suction and discharge sections of the hydraulic and pneumatic components to measure hydrodynamic and thermos-physical properties. The measured data were used to determine the system’s energy recovery and power delivery efficiency. Results showed that the HPRB system is capable of recovering 47% of the energy input to the system during charging, and 64% efficient in power output during discharging with an input and output of 0.33 and 0.21 horsepower respectively. Inefficiencies during operation were attributed to heat generation from the gear pump but especially due to the piston accumulator, where heat loss attributed to a 12% reduction in energy potential alone.

Author(s):  
Sidhu Suresh ◽  
Balagovind N. K. Kartha ◽  
Vinod Kumar Gopal ◽  
Sujith T. Pillai ◽  
Govind Udayabhanu ◽  
...  

This article provides the design of the Kinetic Energy Recovery System designed for Effi-Cycle 2012 competition conducted by the Society of Automotive Engineers, North India Section in Chandigarh, India. This hybrid tricycle has the capability to be driven by 2 humans simultaneously and also by a 400W BLDC motor. The tri-cycle won the Overall First, Best Acceleration and First Runner-up in the Endurance awards. A Kinetic Energy Recovery System (KERS), also known as regenerative braking system, is inbuilt into it in order to harness the energy lost during braking. The Regenerative Braking system used in Effi-cycle makes use of an electronic energy efficient converter to store energy regenerated from the motor during braking, in the form of electrical energy. The system monitors the effective voltage at the BLDC motor driver outputs and calculates the required control algorithms to drive the converter and recover the maximum energy at any point. Microcontrollers are used to monitor the performance of the entire system by tabulating and analysing the different sensor values.


2012 ◽  
Vol 157-158 ◽  
pp. 542-545 ◽  
Author(s):  
Liang Chu ◽  
Liang Yao ◽  
Zi Liang Zhao ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang

The Anti-lock Braking System (ABS) of Electric Vehicle (EV) is improved in this paper. Based on the research of system structure and motor, a new method is proposed to adjust the threshold and coordinate the motor braking force with the friction braking force. So the traditional threshold control algorithm of ABS is improved for the EV. The simulation results based on the MATLAB/Simulink model indicate that the improved ABS can keep the wheels in the stability region and decrease the motor regenerative braking force as soon as possible. The balance between brake safety and energy recovery is achieved through this method.


2012 ◽  
Vol 490-495 ◽  
pp. 195-202 ◽  
Author(s):  
Xiao Bing Ning ◽  
Yao Ting Xu ◽  
Qiu Cheng Wang ◽  
Jue Jiang Chen

In order to increase the regenerative braking energy recovery and the dynamic performance of vehicle start and acceleration in the stage of brake, the hydraulic braking energy recovery system was used with the storage battery braking energy recovery system after comparing kinds of regenerative braking recovery plan and energy storage method. The system was used to do simulation and analysis in vehicle dynamic performance and energy recovery efficiency under the PID control and ECE-15 cycle. The system simulation and analysis results show that using hydraulic regenerative braking system in pure electric vehicle can significantly improve the ability of vehicle’s start-acceleration and the increase in vehicle driving range of around 28%.


2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yanfeng Xiong ◽  
Qiang Yu ◽  
Shengyu Yan ◽  
Xiaodong Liu

This paper proposes a novel decoupled approach of a regenerative braking system for an electric city bus, aiming at improving the utilization of the kinetic energy for rear axle during a braking process. Three contributions are added to distinguish from the previous research. Firstly, an energy-flow model of the electric bus is established to identify the characteristic parameters which affect the energy-saving efficiency of the vehicle, while the key parameters (e.g., driving cycles and the recovery rate of braking energy) are also analyzed. Secondly, a decoupled braking energy recovery scheme together with the control strategy is developed based on the characteristics of the power assistance for electric city bus which equips an air braking system, as well as the regulatory requirements of ECE R13. At last, the energy consumption of the electric city bus is analyzed by both the simulation and vehicle tests, when the superimposed and the decoupled regenerative braking system are, respectively, employed for the vehicle. The simulation and actual road test results show that compared with the superposition braking system of the basic vehicle, the decoupled braking energy recovery system after the reform can improve the braking energy recovery rate and vehicle energy-saving degree. The decoupled energy recovery system scheme and control strategy proposed in this paper can be adopted by bus factories to reduce the energy consumption of pure-electric buses.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 711 ◽  
Author(s):  
Yang Yang ◽  
Qiang He ◽  
Yongzheng Chen ◽  
Chunyun Fu

The regenerative braking system of electric vehicles can not only achieve the task of braking but also recover the braking energy. However, due to the lack of in-depth analysis of the energy loss mechanism in electric braking, the energy cannot be fully recovered. In this study, the energy recovery problem of regenerative braking using the independent front axle and rear axle motor drive system is investigated. The accurate motor model is established, and various losses are analyzed. Based on the principle of minimum losses, the motor control strategy is designed. Furthermore, the power flow characteristics in electric braking are analyzed, and the optimal continuously variable transmission (CVT) speed ratio under different working conditions is obtained through optimization. To understand the potential of dual-motor energy recovery, a regenerative braking control strategy is proposed by optimizing the dynamic distribution coefficient of the dual-electric mechanism and considering the restrictions of regulations and the I curve. The simulation results under typical operating conditions and the New York City Cycle (NYCC) proposed conditions indicate that the improved strategy has higher joint efficiency. The energy recovery rate of the proposed strategy is increased by 1.18% in comparison with the typical braking strategy.


2015 ◽  
Vol 789-790 ◽  
pp. 878-882
Author(s):  
Bing Lu ◽  
Hong Wen He ◽  
Qun Ce Wang

Through the design way of reducing dimension, a control algorithm of the parallel compound braking is put forwarded. The flow of reducing dimension is designed, the sampling which is based on the Design of Experiment (DOE) and off-line deterministic optimization are accomplished. The reducing dimension of dual-motor coordinate coefficient is designed and the prediction model of parallel compound braking is constructed, which are based on the data of deterministic optimization. The analysis of reliability shows that the algorithm has a higher reliability and the energy recovery efficiency of the vehicle regenerative braking is improved under the condition of well braking stability.


Sign in / Sign up

Export Citation Format

Share Document