Sewage sludge drying process integration with a waste-to-energy power plant

2015 ◽  
Vol 42 ◽  
pp. 159-165 ◽  
Author(s):  
A. Bianchini ◽  
L. Bonfiglioli ◽  
M. Pellegrini ◽  
C. Saccani
Author(s):  
Sang Hyun Oh ◽  
Ki Ho Park ◽  
Byoung Hyuk Yu ◽  
Sung Il Kim

The purpose of this study is to analyze the changes of drying efficiency according to the inflow conditions of outside air into the drying equipment during the drying process in order to reduce the energy used in the drying process of sludge. We conducted the experiment using a vertical thin film dryer. Materials used for the experiment are sewage sludge. As a result of the study, higher drying efficiency was obtained in the case of outside air inflow than in the case of no outside air inflow. In addition, optimum condition of outside air inflow was derived. Keywords: Drying; Sludge; Drying efficiency; Air inflow condition 


Author(s):  
Joon Hwang ◽  
Woo-Jung Kang

This paper presents the experimental analysis of sewage sludge drying process using Taguchi method to know the characteristics and optimize drying process parameters. There have been attempt to perform the sewage sludge disposal such as simple reclaiming, dumping in the sea, incineration. Currently, these methods are restricted by national or international government regulations. The drying process is adopted as effective method for sewage sludge treatment, however sewage sludge makes difficult to treat with large volume at the real drying process plant because of its own complicated physical, chemical, and thermal properties. To treat the sewage sludge in view of environmental friendly and cost effective way, it is necessary to control the volume and weight of sewage sludge. It is not only reduces the delivery expenses and improve the re-usability, but also prevents several shift environmental pollution from nocuous sewage sludge. In this study, sewage sludge drying process parameter was modeled and evaluated with Taguchi method. From these research results the process parameters can be optimized to satisfy the desired qualities of particle diameter and moisture content of dried sewage sludge, and also provided to achieve the economic process operation.


2021 ◽  
Vol 135 ◽  
pp. 298-308
Author(s):  
Tarek L. Rashwan ◽  
Taryn Fournie ◽  
José L. Torero ◽  
Gavin P. Grant ◽  
Jason I. Gerhard

2020 ◽  
Vol 42 (11) ◽  
pp. 580-591
Author(s):  
Jae-Ram Park ◽  
Dong-Hoon Lee ◽  
Kyung-Hyun Kim

Objectives : The effects of temperatures of supplied air and exhaust gas on moisture removal in the bio-drying process of sewage sludge were assessed by simulating the process. We also suggested performance and efficiency indicators for moisture removal in this process and identified their effectivity.Methods : The bio-drying process of sewage sludge was simulated by mathematical modeling of heat and mass balance under different combinations of supplied-air temperatures and control ranges of exhaust gas temperatures. The simulation results were analyzed by using some indicators for assessing the performance and efficiency of moisture removal.Results and Discussion : While BVS (biodegradable volatile solid) degradation was inhibited at a higher supplied-air temperature and a lower control range of exhaust gas temperature, moisture reduction was enhanced at the supplied-air temperature nearer to ambient and the controlled exhaust gas temperature for 45 to 50℃. The drying performance could be improved by the utilization of both metabolic heat and convective heat from hot supplied-air for the source of heat necessary for moisture removal. We suggested the moisture removal rate as a performance indicator, and both the moisture removing capacity of supplied-air and the mass ratio of moisture removal to BVS degradation as an efficiency indicator. We identified that this mass ratio could be an alternative for thermal efficiency of drying.Conclusions : It is effective to control the air-flow rate to keep the exhaust gas temperature within 45~50℃ during bio-drying of sewage sludge in terms of drying performance and efficiency. It is expected that a specified range or minimum required value for the performance and efficiency indicators in the bio-drying process which suggested in this study needs to be established.


Author(s):  
Agnes Serbanescu ◽  
Mona Barbu ◽  
Ionut Cristea ◽  
Gina Catrina ◽  
Georgiana Cernica ◽  
...  

A good function of waste-to-energy installation requires knowledge of the combustion characteristics of the fuel and fusion characteristics of the ash produced in the combustion process. Sewage sludge could be considered as renewable fuel due the high quantity of organics of sufficiently high calorific value. The combustion of sewage sludge can cause operating problems due to high ash content containing mineral compounds. This paper presents the oxide composition of three kinds of sewage sludge ashes and the influence on the slagging and fouling process in combustion. For comparation, two coal samples were selected, a low and a high rank coal. The mineral matter were investigated by the X-ray fluorescence analytical technique using the Rigaku CG X-ray Spectrofluorimeter. The evaluation of slagging and fouling process was performed on the basis of some indices: the basic oxides, the base-to-acid ratio, the slagging index and the fouling index. The conclusion based on experimental studies is that depending on mineral content the sewage sludge ash can cause high to moderate slagging and fouling hazard.


2015 ◽  
Vol 3 (1) ◽  
pp. 482-487 ◽  
Author(s):  
Érika Cristina Francisco ◽  
Telma Teixeira Franco ◽  
Leila Queiroz Zepka ◽  
Eduardo Jacob-Lopes

Sign in / Sign up

Export Citation Format

Share Document