Scaling up self-sustained smouldering of sewage sludge for waste-to-energy

2021 ◽  
Vol 135 ◽  
pp. 298-308
Author(s):  
Tarek L. Rashwan ◽  
Taryn Fournie ◽  
José L. Torero ◽  
Gavin P. Grant ◽  
Jason I. Gerhard
Author(s):  
Agnes Serbanescu ◽  
Mona Barbu ◽  
Ionut Cristea ◽  
Gina Catrina ◽  
Georgiana Cernica ◽  
...  

A good function of waste-to-energy installation requires knowledge of the combustion characteristics of the fuel and fusion characteristics of the ash produced in the combustion process. Sewage sludge could be considered as renewable fuel due the high quantity of organics of sufficiently high calorific value. The combustion of sewage sludge can cause operating problems due to high ash content containing mineral compounds. This paper presents the oxide composition of three kinds of sewage sludge ashes and the influence on the slagging and fouling process in combustion. For comparation, two coal samples were selected, a low and a high rank coal. The mineral matter were investigated by the X-ray fluorescence analytical technique using the Rigaku CG X-ray Spectrofluorimeter. The evaluation of slagging and fouling process was performed on the basis of some indices: the basic oxides, the base-to-acid ratio, the slagging index and the fouling index. The conclusion based on experimental studies is that depending on mineral content the sewage sludge ash can cause high to moderate slagging and fouling hazard.


2021 ◽  
Author(s):  
Shuai Guo ◽  
DanDan Xu ◽  
Xin Guo ◽  
Xingcan Li ◽  
Chenchen Zhao

Abstract The harmful effects of improper sewage sludge (SS) treatment on the environment inspire the search for more benign sludge processing techniques such as hydrothermal carbonization (HTC); the abundant organic matter in SS is used for energy recovery. Herein, response surface methodology (RSM) was used to optimize the HTC-based preparation of SS hydrochar and its gasification performance. Specifically, the hydrochar yield, higher heating value (HHV), and gasification activity index were selected as optimization goals, while carbonization temperature (160–260°C), residence time (30–150 min), and acetic acid concentration (0–1.5 M) were selected as factors influencing the HTC process and CO2-assisted gasification performance. Carbonization temperature was the dominant parameter determining hydrochar yield, HHV, and gasification activity. The hydrochar yield (82.69%) and calorific value (7820.99 kJ kg−1) were maximized under comparatively mild conditions (160°C, 30 min, and 0.07 M acetic acid), whereas the gasification activity index (0.288 s−1) was maximized under harsher conditions (211.34°C, 88.16 min, and 1.58 M acetic acid). The obtained results help to guide the HTC of SS intended for gasification, thus promoting the development of this promising waste-to-energy technology, and may facilitate the design and further optimization of thermochemical SS conversion.


2021 ◽  
Vol 12 (1) ◽  
pp. 9-25
Author(s):  
Vesna Mislej ◽  
Viktor Grilc ◽  
Barbara Novosel ◽  
Ana Mladenovič ◽  
Vesna Zalar Serjun

The treated sewage sludge under consideration is a hygienized biodegradable waste in the form of pellets. It can be used as a fertilizer, but only for spreading on non-agricultural land. Regarding “waste to energy” philosophy, the specification of pellets as an alternative solid fuel according to EN 15359 resulted in “NCV4; Cl1; Hg3-4” class. The major problem regarding the final pellets utilization is the lack of facilities for energy and material recovery from this type of waste in Slovenia. According to the newest legislation regarding the waste management, a product status for residues generated in combustion and pyrolysis of pellets on a laboratory and semi-pilot scale was not achieved. The holistic approach to final pellets utilization was studied and regarding the full-scale level of self-sufficient sewage sludge management in Slovenia, some legislative provisions become significant obstacles.


2021 ◽  
Author(s):  
Dilvin Çebi ◽  
Melih Soner Celiktas ◽  
Hasan Sarptaş

Abstract In pursuit of establishing a circular economy, waste-to-energy approach is gaining increasing attention. In this manner valorization of sewage sludge constitutes a critical importance due to generation in high quantities, difficulties in disposal and associating environmental impacts. Hydrothermal carbonization (HTC) is a relatively recent, however acclaimed method for sewage sludge management and valorization due to process compliance with sludge characteristics. In this review, research studies are evaluated under the categorization of application fields of sludge derived HTC products such as solid fuel production, gas production, soil remediation, nutrient recovery, water treatment and energy storage. Research findings are compiled and a network mapping is employed for the visualization of the current situation and correlation in respective fields. The potential of HTC for sewage sludge valorization and future projections concerning available techniques are assessed within the context of circular economy.


2015 ◽  
Vol 42 ◽  
pp. 159-165 ◽  
Author(s):  
A. Bianchini ◽  
L. Bonfiglioli ◽  
M. Pellegrini ◽  
C. Saccani

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3161 ◽  
Author(s):  
Kacper Świechowski ◽  
Martyna Hnat ◽  
Paweł Stępień ◽  
Sylwia Stegenta-Dąbrowska ◽  
Szymon Kugler ◽  
...  

Sustainable solutions are needed to manage increased energy demand and waste generation. Renewable energy production from abundant sewage sludge (SS) and digestate (D) from biogas is feasible. Concerns about feedstock contamination (heavy metals, pharmaceuticals, antibiotics, and antibiotic-resistant bacteria) in SS and D limits the use (e.g., agricultural) of these carbon-rich resources. Low temperature thermal conversion that results in carbonized solid fuel (CSF) has been proposed as sustainable waste utilization. The aim of the research was to investigate the feasibility of CSF production from SS and D via torrefaction. The CSF was produced at 200~300 °C (interval of 20 °C) for 20~60 min (interval 20 min). The torrefaction kinetics and CSF fuel properties were determined. Next, the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of SS and D torrefaction were used to build models of energy demand for torrefaction. Finally, the evaluation of the energy balance of CSF production from SS and D was completed. The results showed that torrefaction improved the D-derived CSF’s higher heating value (HHV) up to 11% (p < 0.05), whereas no significant HHV changes for SS were observed. The torrefied D had the highest HHV of 20 MJ∙kg−1 under 300 °C and 30 min, (the curve fitted value from the measured time periods) compared to HHV = 18 MJ∙kg−1 for unprocessed D. The torrefied SS had the highest HHV = 14.8 MJ∙kg−1 under 200 °C and 20 min, compared to HHV 14.6 MJ∙kg−1 for raw SS. An unwanted result of the torrefaction was an increase in ash content in CSF, up to 40% and 22% for SS and D, respectively. The developed model showed that the torrefaction of dry SS and D could be energetically self-sufficient. Generating CSF with the highest HHV requires raw feedstock containing ~15.4 and 45.9 MJ∙kg−1 for SS and D, respectively (assuming that part of feedstock is a source of energy for the process). The results suggest that there is a potential to convert biogas D to CSF to provide renewable fuel for, e.g., plants currently fed/co-fed with municipal solid waste.


2021 ◽  
Author(s):  
Małgorzata Jadwiga Kacprzak

Abstract Introduction of the circular economy package as a result of the necessity to protect natural resources has also forced a new approach for effective wastewater and biowaste treatment and management. Wastewater treatment plants (WWTPs) have become crucial elements of regional bioeconomy - mainly through energy (waste to energy) and matter (nutrients-energy-water) recovery as an element of sustainable development of a smart city. In Poland in 2019 operated 3278 municipal wastewater treatment plants. To achieve specific effluent goals for BOD, nitrogen and phosphorus, different adaptations and modifications have been made. Modernization of technological lines of wastewater treatment has led to a significant improvement in the quality of treated sewage, at the largest WWTPs in Warsaw, Cracow or Gdansk. Eleven WWTPs produce approx. 34% of the total volume of approx. 337 GWh of electricity from biogas in Poland. The potential of producing electricity from biogas in WWTPs in Poland can be estimated at approx. 700–850 GWh per year. According to the data of the Statistics Poland in 2019 in Poland approx. 25% of sewage sludge was used directly in agriculture and for land reclamation. Simultaneously more than 100 WWTPs produce compost at high quality. However only few produce organic/organic-mineral fertilizers, mainly with addition of calcium.


1994 ◽  
Vol 30 (8) ◽  
pp. 185-195 ◽  
Author(s):  
M. Hiraoka ◽  
T. Hukui ◽  
A. Kimura ◽  
K. Shimizu ◽  
H. Takiguchi

Sludge melting systems have been recently applied to the treatment of a great deal of sludge generated from sewage treatment plants, and the plant scale has become bigger and bigger in accordance with the social requirements. This paper reports operating data of one of the biggest scale melting plants for sewage sludge equipped with two reflector type melting furnace trains and includes running cost data as well as estimates for scaling up the process.


Author(s):  
N. J. Themelis ◽  
A. F. Gregory

This report presents some of the results of a study conducted for the New York Academy of Sciences on the sources of past and current emissions of mercury in the Hudson-Raritan basin (HRB), an area of 42,000 square kilometers with a population of fifteen million. Mercury emissions to the atmosphere are reported from all high temperature processes, such as utility, commercial and residential boilers, secondary iron and steel smelters, Waste-to-Energy (WTE) plants, and sewage sludge incinerators. At present, the primary sources of atmospheric emissions in HRB are utility and industrial boilers (873 kilograms of mercury/year), secondary iron and steel plants (595 kg), Waste-to-Energy plants (147 kg), and sewage sludge incinerators (90 kg). The total deposition of mercury from the atmosphere on the surface of HRB was estimated at about 1,100 kilograms per year. The study examined in detail the decrease in mercury emissions from WTE plants. A metric was developed that expresses emissions from WTE plants as kilograms of mercury per million tons of MSW combusted. It was shown that reported annual emissions of mercury from the U.S. WTE plants have decreased from a high of 81,800 kilograms in 1989 to an estimated 2,200 kilograms at the present time.


Sign in / Sign up

Export Citation Format

Share Document