Necessity of direct energy and ammonium recovery for carbon neutral municipal wastewater reclamation in an innovative anaerobic MBR-biochar adsorption-reverse osmosis process

2022 ◽  
pp. 118058
Author(s):  
Xiaoyuan Zhang ◽  
Jun Gu ◽  
Yu Liu
2012 ◽  
Vol 66 (10) ◽  
pp. 2185-2193 ◽  
Author(s):  
Yi-Che Hsu ◽  
Hsin-Hsu Huang ◽  
Yu-De Huang ◽  
Ching-Ping Chu ◽  
Yu-Jen Chung ◽  
...  

Water shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented. Two processes, sand filter – ultrafiltration – reverse osmosis (SF-UF-RO) and sand filter – electrodialysis reversal (SF-EDR), were operated in parallel to evaluate their stability and filtrate quality. It has been noticed that EDR could accept inflow with worse quality and thus required less pretreatment compared with RO. During the operation, EDR required more frequent chemical cleaning (every 3 weeks) than RO did (every 3 months). For the filtrate quality, the desalination efficiency of SF-EDR ranged from 75 to 80% in continuous operation mode, while the conductivity ranged from 100 to 120 μS/cm, with turbidity at 0.8 NTU and total organic carbon at 1.3 mg/L. SF-EDR was less efficient in desalinating the multivalent ions than SF-UF-RO was. However for the monovalent ions, the performances of the two processes were similar to each other. Noticeably, total trihalomethanes in SF-EDR filtrate was lower than that of SF-UF-RO, probably because the polarization effects formed on the concentrated side of the EDR membrane were not significant. At the end of this study, cost analysis was also conducted to compare the capital requirement of building a full-scale wastewater reclamation plant using the two processes. The results showed that using SF-EDR may cost less than using SF-UF-RO, if the users were to accept the filtrate quality of SF-EDR.


Desalination ◽  
2014 ◽  
Vol 349 ◽  
pp. 73-79 ◽  
Author(s):  
Fang Tang ◽  
Hong-Ying Hu ◽  
Li-Juan Sun ◽  
Qian-Yuan Wu ◽  
Yan-Mei Jiang ◽  
...  

2019 ◽  
Vol 33 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Davor Dolar ◽  
Marko Racar ◽  
Krešimir Košutić

Municipal wastewater was treated by membrane bioreactor (MBR), and the obtained<br /> MBR effluent was then treated by reverse osmosis (RO), and nanofiltration (NF). The MBR effluent was additionally treated by reverse osmosis (XLE) and nanofiltration (NF90 and NF270) membranes. RO and NF permeate output streams were assessed for their utilization in agricultural irrigation. The MBR used a hollow fiber ZeeWeed 1 ultrafiltration<br /> membrane. Conductivity, turbidity, total suspended solids, chemical oxygen demand, and dissolved organic carbon were rejected by MBR with average values of 10 %, 100 %, 99.8 %, 96 %, and 88 %, respectively. Further treatment with RO/NF membranes showed additional reduction in all measured parameters. According to results, MBR effluent belongs to the ‘slight to moderate’ degree of restriction on use due to conductivity, chloride, and sodium concentrations. RO/NF permeate, based on all parameters, belongs<br /> to the ‘none’ degree of restriction on use, except on sodium adsorption ratio (SAR), where it belongs to the ‘severe’ degree of restriction on use. Based on conductivity and SAR parameters, assessment of produced water quality obtained by blending of two effluents<br /> (50 % of MBR and 50 % of NF270 permeate) resulted in an output stream appropriate for irrigation, proving that the blending of output streams in this ratio is a good strategy for agricultural irrigation.


Sign in / Sign up

Export Citation Format

Share Document