scholarly journals Municipal Wastewater Reclamation and Water Reuse for Irrigation by Membrane Processes

2019 ◽  
Vol 33 (3) ◽  
pp. 417-425 ◽  
Author(s):  
Davor Dolar ◽  
Marko Racar ◽  
Krešimir Košutić

Municipal wastewater was treated by membrane bioreactor (MBR), and the obtained<br /> MBR effluent was then treated by reverse osmosis (RO), and nanofiltration (NF). The MBR effluent was additionally treated by reverse osmosis (XLE) and nanofiltration (NF90 and NF270) membranes. RO and NF permeate output streams were assessed for their utilization in agricultural irrigation. The MBR used a hollow fiber ZeeWeed 1 ultrafiltration<br /> membrane. Conductivity, turbidity, total suspended solids, chemical oxygen demand, and dissolved organic carbon were rejected by MBR with average values of 10 %, 100 %, 99.8 %, 96 %, and 88 %, respectively. Further treatment with RO/NF membranes showed additional reduction in all measured parameters. According to results, MBR effluent belongs to the ‘slight to moderate’ degree of restriction on use due to conductivity, chloride, and sodium concentrations. RO/NF permeate, based on all parameters, belongs<br /> to the ‘none’ degree of restriction on use, except on sodium adsorption ratio (SAR), where it belongs to the ‘severe’ degree of restriction on use. Based on conductivity and SAR parameters, assessment of produced water quality obtained by blending of two effluents<br /> (50 % of MBR and 50 % of NF270 permeate) resulted in an output stream appropriate for irrigation, proving that the blending of output streams in this ratio is a good strategy for agricultural irrigation.

2000 ◽  
Vol 42 (1-2) ◽  
pp. 263-268 ◽  
Author(s):  
R. Messalem ◽  
A. Brenner ◽  
S. Shandalov ◽  
Y. Leroux ◽  
P. Uzlaner ◽  
...  

In Israel the shortage of water and concern for the quality of groundwater resources have led to an awareness that a national wastewater reclamation program must be developed. Such a program could cover a major part of the agricultural water demand and could facilitate disposal of effluents without health hazards or environmental problems. A two-stage pilot-scale system comprising secondary sequencing batch reactor (SBR) treatment and tertiary microfiltration was operated for the treatment of Beer-Sheva municipal wastewater. The self-cleaning, continuous microfiltration system comprised a filter module made up of hollow fiber microporous membranes, with a pore size distribution of less than 0.1 μm, encapsulated into a bundle. The unit, which has a nominal filtration area of 4 m2, can treat 4–5 m3 of sewage per day, at a nominal rate of about 500 L/h. SBR treatment of the raw sewage produced an effluent with a biochemical oxygen demand (BOD) of &lt;20 mg/L and total suspended solids (TSS) of &lt;20 mg/L. Further treatment by microfiltration resulted in a BOD &lt;5 mg/L, TSS &lt;1 mg/L and turbidity &lt;0.2 nephelometric turbidity units (NTU). Bacterial counts showed 6-log removal of coliforms and fecal coliforms. These results indicate that the two-stage scheme is capable of producing an effluent that meets or even surpasses the requirements for unrestricted water reuse for agriculture.


2013 ◽  
Vol 68 (9) ◽  
pp. 1994-1999 ◽  
Author(s):  
Muhammad Umar ◽  
Felicity Roddick ◽  
Linhua Fan

The UVC/H2O2 process was studied at laboratory scale for the treatment of one moderate (conductivity ∼8 mS/cm) and two high salinity (∼23 mS/cm) municipal wastewater reverse osmosis concentrate (ROC) samples with varying organic and inorganic characteristics. The process efficiency was characterized in terms of reduction of dissolved organic carbon (DOC), chemical oxygen demand (COD), colour and absorbance at 254 nm (A254), and the improvement of biodegradability. The reduction of colour and A254 was significantly greater than for DOC and COD for all samples due to the greater breakdown of humic compounds, as confirmed by fluorescence excitation-emission matrix spectra. Fairly small differences in the reduction of DOC (26–38%) and COD (25–37%) were observed for all samples, suggesting that the salinity of the ROC did not have a significant impact on the UVC/H2O2 treatment under the test conditions. The biodegradability of the treated ROC samples improved markedly (approximately 2-fold) after 60 min UVC/H2O2 treatment. This study indicates the potential of UVC/H2O2 treatment followed by biological processes for treating high-salinity concentrate, and the robustness of the process where the characteristics of the secondary effluent (influent to RO) and thus resultant ROC vary significantly.


Desalination ◽  
1996 ◽  
Vol 106 (1-3) ◽  
pp. 183-193
Author(s):  
Jerzy Kurbiel ◽  
Krystyna Żeglin ◽  
Stanisław M. Rybicki

2013 ◽  
Vol 300-301 ◽  
pp. 1381-1384
Author(s):  
Cheng Di Dong ◽  
Yao Ting Tu ◽  
Chiu Wen Chen ◽  
Chih Ming Kao ◽  
Chih Feng Chen

Major objectives of this study are to evaluation the enrichment, accumulation, and potential biological effects of copper (Cu) in the surface sediments of Jen-Gen River estuary, Taiwan. Eleven sampling locations were installed near the mouth of Jen-Gen River to collect sediment samples for analyzing Cu. Results of laboratory analyses show that concentrations of Cu in the sediments are between 67 and 278 mg/kg with an average of 181±61 mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the boundary of the river estuary. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of pollution. Results from the enrichment factor (EF) analysis imply that the sediments can be characterized as minor to moderately severe degree of Cu enrichment. Results of geo-accumulation index (Igeo) analysis indicate that the sediments can be characterized as none to moderate degree of Cu accumulation. Base on the comparison with sediment quality guidelines (SQGs), the concentrations of Cu in Jen-Gen River mouth sediments may cause acute biological damage.


2018 ◽  
Vol 77 (8) ◽  
pp. 1990-1997 ◽  
Author(s):  
Shahzad Jamil ◽  
Sanghyun Jeong ◽  
Saravanamuthu Vigneswaran

Abstract Reverse osmosis concentrate (ROC) from wastewater reclamation plants have high concentrations of organic and inorganic compounds, which have to be removed before its disposal. Forward osmosis (FO) and nanofiltration (NF) membranes were tested to treat the ROC for possible water reuse. This research investigated the combined and individual influence of organic and inorganic matter on the fouling of NF and FO membranes. The results revealed that the NF membrane removed most of the organic compounds and some inorganics. The study further highlighted that the FO membrane at NF mode removed the majority of the inorganic compounds and some organics from the ROC. A pretreatment of granulated activated carbon (GAC) adsorption removed 90% of the organic compounds from ROC. In addition, GAC adsorption and acid pretreatment of ROC improved the net water permeate flux by 17% when an FO membrane was used in the NF system. Acid treatment (by bringing the pH down to 5) helped to remove inorganic ions. Therefore, the resultant permeate can be recycled back to the RO water reclamation plant to improve its efficiency.


Sign in / Sign up

Export Citation Format

Share Document