Chip formation and wear mechanisms of SiAlON and whisker-reinforced ceramics when turning Inconel 718

Wear ◽  
2021 ◽  
Vol 486-487 ◽  
pp. 204128
Author(s):  
Luke Osmond ◽  
David Curtis ◽  
Tom Slatter
CIRP Annals ◽  
2021 ◽  
Author(s):  
Volodymyr Bushlya ◽  
Filip Lenrick ◽  
Axel Bjerke ◽  
Hisham Aboulfadl ◽  
Mattias Thuvander ◽  
...  

2018 ◽  
Vol 26 ◽  
pp. 503-508
Author(s):  
Martin Seimann ◽  
Bingxiao Peng ◽  
Fritz Klocke ◽  
Benjamin Döbbeler

2010 ◽  
Vol 126-128 ◽  
pp. 653-657 ◽  
Author(s):  
Guang Ming Zheng ◽  
Jun Zhao ◽  
Xin Yu Song ◽  
Cao Qing Yan ◽  
Yue En Li

This paper explores the wear mechanisms of a Sialon ceramic tool in ultra high speed turning of Nickel-based alloy Inconel 718. Microstructures of the chips are also investigated. Stereo optical microscope and scanning electron microscope (SEM) are employed to observe worn surfaces of the tool produced by various wear mechanisms and morphological features of chips. In addition, the elemental compositions of wear products are evaluated by energy-dispersive X-ray spectroscopy (EDS). As a result of the study, wear mechanisms identified in the machining tests involve adhesive wear and abrasive wear. At the initial stage of cutting process, crater wear and flank wear are the main wear patterns. At the rapid wear stage, the SEM and EDS results showed that the adhered elements of Inconel 718 alloy on the tool rake face such as Ni, Fe and Cr accelerated the tool wear rate. Meanwhile, it was found that the chip morphology was serrated type under ultra high speed cutting condition, furthermore, the tendency of serration of the chip increased with the increase in cutting speed and feed rate.


2010 ◽  
Vol 43 (5-6) ◽  
pp. 1113-1121 ◽  
Author(s):  
Abhay Bhatt ◽  
Helmi Attia ◽  
R. Vargas ◽  
V. Thomson

2013 ◽  
Vol 581 ◽  
pp. 26-31
Author(s):  
Ivan Mrkvica ◽  
Miroslav Janoš

This article focuses on the analysis of tool wear mechanisms in milling of Inconel 718. Inconel 718 is tough and highly temperature resistive material, which is used due to its excellent properties especially in aggressive corrosive medium. Machining of this alloy is still complicated. The feasibility of four inserts tested for milling of Inconel 718 has been shown in the work. Different cutting speeds and feeds were used. Experimental tests were performed in order to analyze wear patterns evolution. It was found influence of cutting conditions and type if insert in tool wear mode.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771370 ◽  
Author(s):  
Anhai Li ◽  
Jun Zhao ◽  
Guanming Hou

Chip morphology and its formation mechanisms, cutting force, cutting power, specific cutting energy, tool wear, and tool wear mechanisms at different cutting speeds of 100–3000 m/min during dry face milling of Ti-6Al-4V alloy using physical vapor deposition-(Ti,Al)N-TiN-coated cemented carbide tools were investigated. The cutting speed was linked to the chip formation process and tool failure mechanisms of the coated cemented cutting tools. Results revealed that the machined chips exhibited clear saw-tooth profile and were almost segmented at high cutting speeds, and apparent degree of saw-tooth chip morphology occurred as cutting speed increased. Abrasion in the flank face, the adhered chips on the wear surface, and even melt chips were the most typical wear forms. Complex and synergistic interactions among abrasive wear, coating delamination, adhesive wear, oxidation wear, and thermal mechanical–mechanical impacts were the main wear or failure mechanisms. As the cutting speed was very high (>2000 m/min), discontinuous or fragment chips and even melt chips were produced, but few chips can be collected because the chips easily burned under the extremely high cutting temperature. Large area flaking, extreme abrasion, and serious adhesion dominated the wear patterns, and the tool wear mechanisms were the interaction of thermal wear and mechanical wear or failure under the ultra-high frequency and strong impact thermo-mechanical loads.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Chun Liu ◽  
Min Wan ◽  
Weihong Zhang ◽  
Yun Yang

AbstractInconel 718, a nickel, chrome and iron alloy, has special advantages, such as high-temperature strength, thermal resistance and corrosion resistance, which facilitate wide usage in the aerospace industry, especially in the hot sections of gas turbine engines. However, machining this alloy is correlated closely with the material’s inherent properties such as excellent combination of strength, hardness and toughness, low thermal conductivity and the tendency to adhere to cutting tools. This nickel alloy also contains inclusions of hard abrasive carbide particles that lead to work-hardening of the workpiece material and thus abrasive wear of the cutting tool. That is, the machining of Inconel 718 is always influenced by high mechanical and thermal loads. This article reviews the chip formation mechanism of Inconel 718. One of the main characteristics in machining of Inconel 718 is that it will produce serrated or segmented chips in a wide range of cutting speeds and feeds. Existing studies show that the chip serration or segmentation by shear localization affects the machined surface integrity, and also contributes to the chip’s evacuation and the automation of machining operations. Thus, research conclusion indicates that the serrated or segmented chip phenomenon is desirable in reducing the level of cutting force, and detailed analysis of models and approaches to understand the chip formation mechanism of Inconel 718 is vital for machining this alloy effectively and efficiently. Therefore, this article presents some summaries on the models and approaches on the chip formation in machining of Inconel 718.


Author(s):  
Paolo Parenti ◽  
Francesco Puglielli ◽  
Massimo Goletti ◽  
Massimiliano Annoni ◽  
Michele Monno

AbstractSolid ceramic end mills for machining heat resistant super alloys (HRSA) have the potential to generate higher material removal rates, up to one order of magnitude, with respect to standard carbide tools. The machining operations in aerospace industry, where large removals are required to obtain tiny and slender parts like turbine blades, is a cost-intensive task that can benefit of the adoption of ceramic solid end mills. However, these tools show a quite limited tool life, especially when used with interrupted tool engagement strategies. Moreover, they might induce heat-related problems in the workpiece material surface integrity. This paper investigates the cutting and the tool wear during milling Inconel 718 with solid ø12 mm cutting end tool made by SiAlON. The wear mechanisms are studied together with their effects on process signals as cutting forces and power, measured via external and CNC integrated sensors. The carried experimental campaign allowed to find out that tool clogging and edge chipping were the primary cutting phenomena leading the tool wear. Cutting strategy (downmilling or upmilling) produced different results in terms of tool wear sensitivity and process outputs whereas upmilling configuration showed the best results in terms of cutting signals stability and surface integrity. At the same time, cutting speed was found to increase the cutting power more in upmilling than downmilling cutting. The analysis of the forces and power demonstrated that the typical tool wear mechanisms can be traced by signal monitoring due to their high impact on cutting processes. This fact shows the good potential of signal monitoring for a better tool life evaluation.


Sign in / Sign up

Export Citation Format

Share Document