scholarly journals Synthesis strategies and biomedical applications for doped inorganic semiconductor nanocrystals

2021 ◽  
Vol 2 (5) ◽  
pp. 100436
Author(s):  
Xuan Peng ◽  
Fujin Ai ◽  
Li Yan ◽  
Enna Ha ◽  
Xin Hu ◽  
...  
2017 ◽  
Vol 23 (3) ◽  
pp. 340-349 ◽  
Author(s):  
Wafa' T. Al-Jamal

Quantum dots are semiconducting nanocrystals that exhibit extraordinary optical properties. QD have shown higher photostability compared to standard organic dye type probes. Therefore, they have been heavily explored in the biomedical field. This review will discuss the different approaches to synthesis, solubilise and functionalise QD. Their main biomedical applications in imaging and photodynamic therapy will be highlighted. Finally, QD biodistribution profile and in vivo toxicity will be discussed.


2020 ◽  
Vol 27 ◽  
Author(s):  
Keru Shi ◽  
Xinyi Xu ◽  
Hanrui Li ◽  
Hui Xie ◽  
Xueli Chen ◽  
...  

: Quantum dots (QDs), whose diameters are often limited to 10 nm, have been of interest to researchers for their unique optical characteristics, which are attributed to quantum confinement. Following their early application in the electrical industry as light-emitting diode materials, semiconductor nanocrystals have continued to show great potential in clinical diagnosis and biomedical applications. The conventional physical and chemical pathways for QD syntheses typically require harsh conditions and hazardous reagents, and these products encounter non-hydrophilic problems due to organic capping ligands when they enter the physiological environment. The natural reducing abilities of living organisms, especially microbes, are then exploited to prepare QDs from available metal precursors. Low-cost and eco-friendly biosynthesis approaches have the potential for further biomedical applications which benefit from the good biocompatibility of protein-coated QDs. The surface biomass offers many binding sites for modifying substances or targeting ligands and so achieving multiple functions through simple and efficient operations. Biosynthetic QDs could function as bioimaging and biolabeling agents because of their luminescence properties similar to those of chemical QDs. In addition, extensive research has been carried out on the antibacterial activity, metal ion detection and bioremediation. As a result, this review details the advanced progress of biomedical applications of biosynthesized QDs and illustrates these principles as clearly as possible.


CLEO: 2015 ◽  
2015 ◽  
Author(s):  
sid sampat ◽  
Niladri karan ◽  
Aaron Keller ◽  
Andrei Piryatinski ◽  
Oleksiy Roslyak ◽  
...  

Author(s):  
Xiao Shao ◽  
Yue Wu ◽  
Shuang Jiang ◽  
Bin Li ◽  
Tianyong Zhang ◽  
...  

The chirality of inorganic semiconductor nanocrystals (NCs) was found to be sensitive to the native achiral ligands used in the synthesis of NCs.


2005 ◽  
Author(s):  
Xavier Michalet ◽  
Fabien F. Pinaud ◽  
Laurent A. Bentolila ◽  
James M. Tsay ◽  
Soeren Doose ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 728-743
Author(s):  
Shariqsrijon Sinha Ray ◽  
Jayita Bandyopadhyay

Abstract Applications of nanotechnology in biomedical engineering are vast and span several interdisciplinary areas of nanomedicine, diagnostics, and nanotheranostics. Herein, we provide a brief perspective on nanotechnology as an enabling tool for the design of new functional materials and devices for medical applications. Semiconductor nanocrystals, also known as quantum dots, are commonly used in optical imaging to diagnose diseases such as cancer. Varieties of metal and metal oxide nanoparticles, and two-dimensional carbon-based nanostructures, are prospective therapeutics and may also be used in protective antiviral/antibacterial applications. Similarly, a number of nanomaterials have shown the potential to overcome the drawbacks of conventional antiviral drugs. However, assessing the adverse effects and toxicities of nanoparticles in medicine and therapeutics is becoming more critical. This article discusses the latest developments of nanomaterials in diagnosis, nanotheranostics, and nanomedicines, with particular emphasis on the importance of nanomaterials in fighting against coronavirus disease. Further, we considered the safety and toxicity of nanomaterials in the context of biomedical applications. Finally, we provided our perspective on the future of nanotechnology in emerging biomedical engineering fields.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Sign in / Sign up

Export Citation Format

Share Document