scholarly journals Nanotechnology-enabled biomedical engineering: Current trends, future scopes, and perspectives

2021 ◽  
Vol 10 (1) ◽  
pp. 728-743
Author(s):  
Shariqsrijon Sinha Ray ◽  
Jayita Bandyopadhyay

Abstract Applications of nanotechnology in biomedical engineering are vast and span several interdisciplinary areas of nanomedicine, diagnostics, and nanotheranostics. Herein, we provide a brief perspective on nanotechnology as an enabling tool for the design of new functional materials and devices for medical applications. Semiconductor nanocrystals, also known as quantum dots, are commonly used in optical imaging to diagnose diseases such as cancer. Varieties of metal and metal oxide nanoparticles, and two-dimensional carbon-based nanostructures, are prospective therapeutics and may also be used in protective antiviral/antibacterial applications. Similarly, a number of nanomaterials have shown the potential to overcome the drawbacks of conventional antiviral drugs. However, assessing the adverse effects and toxicities of nanoparticles in medicine and therapeutics is becoming more critical. This article discusses the latest developments of nanomaterials in diagnosis, nanotheranostics, and nanomedicines, with particular emphasis on the importance of nanomaterials in fighting against coronavirus disease. Further, we considered the safety and toxicity of nanomaterials in the context of biomedical applications. Finally, we provided our perspective on the future of nanotechnology in emerging biomedical engineering fields.

2022 ◽  
pp. 205-231
Author(s):  
Raj Kumar ◽  
Guruprasad Reddy Pulikanti ◽  
Konathala Ravi Shankar ◽  
Darsi Rambabu ◽  
Venkateswarulu Mangili ◽  
...  

2020 ◽  
Vol 20 (6) ◽  
pp. 3303-3339 ◽  
Author(s):  
Saee Gharpure ◽  
Aman Akash ◽  
Balaprasad Ankamwar

The field of nanotechnology elaborates the synthesis, characterization as well as application of nanomaterials. Applications of nanoparticles in various fields have interested scientists since decades due to its unique properties. Combination of pharmacology with nanotechnology has helped in development of newer antimicrobial agents in order to control the ever increasing multidrug resistant micro-organisms. Properties of metal and metal oxide nanoparticles like silver, gold, titanium dioxide as well as magnesium oxide as antimicrobial agents are very well known. This review elaborates synthesis methods and antimicrobial mechanisms of various metal as well as metal oxide nanoparticles for better understanding in order to utilize their potentials in various biomedical applications.


Gels ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 20 ◽  
Author(s):  
Sobhan Ghaeini-Hesaroeiye ◽  
Hossein Razmi Bagtash ◽  
Soheil Boddohi ◽  
Ebrahim Vasheghani-Farahani ◽  
Esmaiel Jabbari

Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1662
Author(s):  
Mahadevamurthy Murali ◽  
Nataraj Kalegowda ◽  
Hittanahallikoppal G. Gowtham ◽  
Mohammad Azam Ansari ◽  
Mohammad N. Alomary ◽  
...  

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn2+) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes. These biosynthesized nanoparticles possess strong biological activities and are in use for various biological applications in several industries. Initially, the present review discusses the synthesis and recent advances of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their biomedical applications (such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, photocatalytic, wound healing, and drug delivery), followed by their mechanisms of action involved in detail. This review also covers the drug delivery application of plant-mediated zinc oxide nanoparticles, focusing on the drug-loading mechanism, stimuli-responsive controlled release, and therapeutic effect. Finally, the future direction of these synthesized zinc oxide nanoparticles’ research and applications are discussed.


Author(s):  
Khyati D. Kshirsagar ◽  
Shubham M. Avhad ◽  
Pracheta A. Kuwar

Solid colloidal particles of size from 10 to 1000 Nanometre are known as Nanoparticles. Nanoparticles contribute many benefits to bigger particles such as enhanced surface-to-volume ratio and enhanced magnetic properties. Over the last few years, there has been an undeviating growing interest in using nanoparticles in different biomedical applications such as targeted drug delivery, hyperthermia, photo ablation therapy, bio imaging, and biosensors. Iron oxide nanoparticles have dominated applications, such as drug delivery, hyperthermia, bio imaging, cell labelling, and gene delivery, because of their superior properties such as chemical stability, non-toxicity, biocompatibility, high saturation magnetization, and high magnetic susceptibility. In this paper, biomedical applications of two different types of nanoparticles metal oxide nanoparticles and carbon nanotubes are discussed.


2014 ◽  
Vol 11 (2) ◽  
pp. 139-149 ◽  
Author(s):  
Denisa Ficai ◽  
Ovidiu Oprea ◽  
Anton Ficai ◽  
Alina Holban

Author(s):  
Suresh Sagadevan ◽  
Anita Lett J ◽  
Is Fatimah ◽  
Yogeswaran Lokanathan ◽  
Estelle Léonard ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7287
Author(s):  
Tania Limongi

The current Special Issue entitled “Metal and Metal Oxide Nanoparticles: Design, Characterization, and Biomedical Applications” aims to present contributions from all scientists producing and/or applying metal and metal oxide nanoparticles in a diagnostic, therapeutic or theranostics context [...]


Sign in / Sign up

Export Citation Format

Share Document