scholarly journals Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives

2021 ◽  
pp. 100273
Author(s):  
Yanwei Cui ◽  
Xiaoting Lu ◽  
Xiaoping Gou
Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6039
Author(s):  
Bo Xu ◽  
Hao Wang ◽  
Li Tan

DNA methylation (5-methylcytosine, 5mC) was once viewed as a stable epigenetic modification until Rao and colleagues identified Ten-eleven translocation 1 (TET1) as the first 5mC dioxygenase in 2009. TET family genes (including TET1, TET2, and TET3) encode proteins that can catalyze 5mC oxidation and consequently modulate DNA methylation, not only regulating embryonic development and cellular differentiation, but also playing critical roles in various physiological and pathophysiological processes. Soon after the discovery of TET family 5mC dioxygenases, aberrant 5mC oxidation and dysregulation of TET family genes have been reported in breast cancer as well as other malignancies. The impacts of aberrant 5mC oxidation and dysregulated TET family genes on the different aspects (so-called cancer hallmarks) of breast cancer have also been extensively investigated in the past decade. In this review, we summarize current understanding of the causes and consequences of aberrant 5mC oxidation in the pathogenesis of breast cancer. The challenges and future perspectives of this field are also discussed.


2021 ◽  
Vol 144 ◽  
pp. 112309
Author(s):  
Peyman Tabnak ◽  
Soroush Masrouri ◽  
Kiarash Roustai Geraylow ◽  
Mahtab Zarei ◽  
Zanyar Haji Esmailpoor

2019 ◽  
Vol 32 (1) ◽  
pp. 6-19 ◽  
Author(s):  
Melissa Bredow ◽  
Jacqueline Monaghan

Activation of Ca2+ signaling is a universal response to stress that allows cells to quickly respond to environmental cues. Fluctuations in cytosolic Ca2+ are decoded in plants by Ca2+-sensing proteins such as Ca2+-dependent protein kinases (CDPKs). The perception of microbes results in an influx of Ca2+ that activates numerous CDPKs responsible for propagating immune signals required for resistance against disease-causing pathogens. This review describes our current understanding of CDPK activation and regulation, and provides a comprehensive overview of CDPK-mediated immune signaling through interaction with various substrates.


2019 ◽  
Vol 10 (1) ◽  
pp. 239-258 ◽  
Author(s):  
Andreas Håkansson

Emulsion formation by homogenization is commonly used in food production and research to increase product stability and to design colloidal structures. High-energy methods such as high-pressure homogenizers and rotor–stator mixers are the two most common techniques. However, to what extent does the research community understand the emulsion formation taking place in these devices? This contribution attempts to answer this question through critically reviewing the scientific literature, starting with the hydrodynamics of homogenizers and continuing by reviewing drop breakup and coalescence. It is concluded that although research in this field has been ongoing for a century and has provided a substantial amount of empirical correlations and scaling laws, the fundamental understanding is still limited, especially in the case of emulsions with a high-volume fraction of the disperse phase, as seen in many food applications. These limitations in the current understanding are also used to provide future perspectives and suggest directions for further investigation.


Sign in / Sign up

Export Citation Format

Share Document