Numb inhibits migration and promotes proliferation of colon cancer cells via RhoA/ROCK signaling pathway repression

2022 ◽  
pp. 113004
Author(s):  
Yongtao Yang ◽  
Lianyong Li ◽  
Huan He ◽  
Mengyang Shi ◽  
Lanying He ◽  
...  
2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yong Ji ◽  
Yiqian Liu ◽  
Changchun Sun ◽  
Lijiang Yu ◽  
Zhao Wang ◽  
...  

AbstractAs a result of mutations in the upstream components of the Wnt/β-catenin signaling pathway, this cascade is abnormally activated in colon cancer. Hence, identifying the activation mechanism of this pathway is an urgent need for the treatment of colon cancer. Here, we found an increase in ADCK1 (AarF domain-containing kinase 1) expression in clinical specimens of colon cancer and animal models. Upregulation of ADCK1 expression promoted the colony formation and infiltration of cancer cells. Downregulation of ADCK1 expression inhibited the colony formation and infiltration of cancer cells, in vivo tumorigenesis, migration, and organoid formation. Molecular mechanistic studies demonstrated that ADCK1 interacted with TCF4 (T-cell factor 4) to activate the β-catenin/TCF signaling pathway. In conclusion, our research revealed the functions of ADCK1 in the development of colon cancer and provided potential therapeutic targets.


2020 ◽  
Author(s):  
Zhen-xian Lew ◽  
Hui-min Zhou ◽  
Yuan-yuan Fang ◽  
Zhen Ye ◽  
Wa Zhong ◽  
...  

Abstract Background: Transgelin, an actin-binding protein, is associated with the cytoskeleton remodeling. Our previous studies found that transgelin was up-regulated in node-positive colorectal cancer versus in node-negative disease. Over-expression of TAGLN affected the expression of 256 downstream transcripts and increased the metastatic potential of colon cancer cells in vitro and in vivo. This study aims to explore the mechanisms that transgelin participates in the metastasis of colon cancer cells.Methods: Immunofluorescence and immunoblotting analysis were used to determine the cellular localization of the endogenous and exogenous transgelin in colon cancer cells. Co-immunoprecipitation and subsequent high performance liquid chromatography/tandem mass spectrometry were performed to identify the proteins potentially interacting with transgelin. Bioinformatics methods were used to analyze the 256 downstream transcripts regulated by transgelin to discriminate the specific key genes and signaling pathways. By analyzing the promoter region of these key genes, GCBI tools were used to predict the potential transcription factor(s) for these genes. The predicted transcription factors were matching to the proteins that have been identified to potentially interact with transgelin. The interaction between transgelin and these transcription factors was verified by co-immunoprecipitation and immunoblotting.Results: Transgelin was found to localize both in the cytoplasm and the nucleus of colon cancer cells. 297 proteins have been identified to interact with transgelin by co-immunoprecipitation and subsequent high performance liquid chromatography/mass spectrometry. Over-expression of TAGLN could lead to differential expression of 184 downstream genes. By constructing the network of gene-encoded proteins, 7 genes (CALM1, MYO1F, NCKIPSD, PLK4, RAC1, WAS and WIPF1) have been discriminated as key genes using network topology analysis. They are mostly involved in the Rho signaling pathway. Poly ADP-ribose polymerase-1 (PARP1) was predicted as the unique transcription factor for the key genes and concurrently matching to the DNA-binding proteins potentially interacting with transgelin. Immunoprecipitation validated that PARP1 interacted with transgelin in human RKO colon cancer cells.Conclusions: The results of this study suggest that transgelin binds to PARP1 and regulates the expression of the downstream key genes mainly involving Rho signaling pathway, thus participates in the metastasis of colon cancer.


Oncotarget ◽  
2014 ◽  
Vol 5 (11) ◽  
pp. 3673-3684 ◽  
Author(s):  
Mei-Ieng Che ◽  
John Huang ◽  
Ji-Shiang Hung ◽  
Yo-Chuen Lin ◽  
Miao-Juei Huang ◽  
...  

2016 ◽  
Vol 7 (8) ◽  
pp. 928-934 ◽  
Author(s):  
Cheng-Zhi Qiu ◽  
Ming-Zhen Wang ◽  
Wai-Shi Yu ◽  
Yan-Ta Guo ◽  
Chun-Xiao Wang ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 030006052093124
Author(s):  
Xuefeng Xuefeng ◽  
Ming-Xing Hou ◽  
Zhi-Wen Yang ◽  
Agudamu Agudamu ◽  
Feng Wang ◽  
...  

Objective The role and mechanism of tetrathiomolybdate (TM) in cancer-associated fibroblasts (CAFs) in colon cancer using three-dimensional (3D) culture were investigated, and the associations between the focal adhesion kinase (FAK) pathway and epithelial–mesenchymal transition (EMT) in CAFs were explored. Methods A 3D co-culture model of colon cancer LOVO cells with CAFs and normal fibroblasts (NFs) was established using Matrigel as a scaffold material. The differential expression of LOXL2 (lysyl oxidase-like 2) in the supernatant of CAFs and NFs was determined using ELISA, and expression levels of EMT-related proteins and FAK signaling pathway-related proteins were determined using western blot. Results LOXL2 levels secreted by CAFs were higher compared with that secreted by NFs. In the CAF + LOVO group, compared with the LOVO group, E-cadherin expression decreased significantly, while N-cadherin and F-PAK expression increased significantly. TM results were opposite compared with the above results. Conclusions CAFs stimulate EMT in human colon cancer LOVO cells by secreting LOXL2 to activate the FAK signaling pathway, thereby promoting tumor metastasis. TM inhibited the occurrence of EMT in the CAF-induced colon cancer LOVO cell line, thereby reducing the invasion and metastasis of colon cancer cells.


Sign in / Sign up

Export Citation Format

Share Document