scholarly journals Roles of progesterone receptor membrane component 1 and membrane progestin receptor alpha in regulation of zebrafish oocyte maturation

2018 ◽  
Vol 263 ◽  
pp. 51-61 ◽  
Author(s):  
Joseph Aizen ◽  
Yefei Pang ◽  
Caleb Harris ◽  
Aubrey Converse ◽  
Yong Zhu ◽  
...  
Reproduction ◽  
2010 ◽  
Vol 140 (5) ◽  
pp. 663-672 ◽  
Author(s):  
Alberto M Luciano ◽  
Valentina Lodde ◽  
Federica Franciosi ◽  
Fabrizio Ceciliani ◽  
John J Peluso

Although the mRNA that encodes progesterone receptor membrane component 1 (PGRMC1) is present in mammalian oocytes, nothing is known about either PGRMC1's expression pattern or function in oocytes during maturation, fertilization, and subsequent embryonic development. As PGRMC1 associates with the mitotic spindle in somatic cells, we hypothesized that PGRMC1 is involved in oocyte maturation (meiosis). Western blot analysis confirmed the presence of PGRMC1 in bovine oocytes. This study also shows that PGRMC1 is present at the germinal vesicle (GV)- and MII-stage oocytes and is associated with male and female pronucleus formation of the zygote and is highly expressed in blastocysts. A more detailed examination of PGRMC1 localization using confocal imaging demonstrated that in GV-stage oocytes, PGRMC1 was concentrated throughout the GV but did not localize to the chromatin. With the resumption of meiosis in vitro, PGRMC1 concentrated in the centromeric region of metaphase I chromosomes, while in the anaphase I/telophase I stages the majority of PGRMC1 concentrated between the separating chromosomes. At the metaphase II stage, PGRMC1 re-associated with the centromeric region of the chromosomes. A colocalization study demonstrated that PGRMC1 associated with the phosphorylated form of aurora kinase B, which localizes to the centromeres at metaphase. Finally, PGRMC1 antibody injection significantly lowered the percentage of oocytes that matured and reached the metaphase II stage after 24 h of culture. The majority of the PGRMC1 antibody-injected oocytes arrested in the prometaphase I stage of meiosis. Furthermore, in most of the PGRMC1 antibody-injected oocytes, the chromosomes were disorganized and scattered. Taken together, these data demonstrate that PGRMC1 is expressed in bovine oocytes and its localization changes at specific stages of oocyte maturation. These observations suggest an important role for PGRMC1 in oocyte maturation, which may be specifically related to the mechanism by which chromosomes segregate.


2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 278-278
Author(s):  
Alberto M. Luciano ◽  
Valentina Lodde ◽  
Federica Franciosi ◽  
Fabrizio Ceciliani ◽  
John J. Peluso

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3265
Author(s):  
Yasuaki Kabe ◽  
Ikko Koike ◽  
Tatsuya Yamamoto ◽  
Miwa Hirai ◽  
Ayaka Kanai ◽  
...  

Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.


2020 ◽  
Vol 132 ◽  
pp. 101-107
Author(s):  
Laura Terzaghi ◽  
Barbara Banco ◽  
Debora Groppetti ◽  
Priscila C. Dall'Acqua ◽  
Chiara Giudice ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sang R. Lee ◽  
Jun H. Heo ◽  
Seong Lae Jo ◽  
Globinna Kim ◽  
Su Jung Kim ◽  
...  

AbstractObesity is implicated in cardiovascular disease and heart failure. When fatty acids are transported to and not adequately oxidized in cardiac cells, they accumulate, causing lipotoxicity in the heart. Since hepatic progesterone receptor membrane component 1 (Pgrmc1) suppressed de novo lipogenesis in a previous study, it was questioned whether cardiac Pgrmc1 protects against lipotoxicity. Hence, we focused on the role of cardiac Pgrmc1 in basal (Resting), glucose-dominant (Refed) and lipid-dominant high-fat diet (HFD) conditions. Pgrmc1 KO mice showed high FFA levels and low glucose levels compared to wild-type (WT) mice. Pgrmc1 KO mice presented low number of mitochondrial DNA copies in heart, and it was concomitantly observed with low expression of TCA cycle genes and oxidative phosphorylation genes. Pgrmc1 absence in heart presented low fatty acid oxidation activity in all conditions, but the production of acetyl-CoA and ATP was in pronounced suppression only in HFD condition. Furthermore, HFD Pgrmc1 KO mice resulted in high cardiac fatty acyl-CoA levels and TG level. Accordingly, HFD Pgrmc1 KO mice were prone to cardiac lipotoxicity, featuring high levels in markers of inflammation, endoplasmic reticulum stress, oxidative stress, fibrosis, and heart failure. In vitro study, it was also confirmed that Pgrmc1 enhances rates of mitochondrial respiration and fatty acid oxidation. This study is clinically important because mitochondrial defects in Pgrmc1 KO mice hearts represent the late phase of cardiac failure.


Sign in / Sign up

Export Citation Format

Share Document