Platinum resistance: The great prognostic equalizer? Association between early disease characteristics and survival after diagnosis of platinum resistance in ovarian cancer

2022 ◽  
Vol 164 (1) ◽  
pp. 22
Author(s):  
Jennifer Haag ◽  
Alexzandra Adler ◽  
Jeanelle Sheeder ◽  
Carolyn Lefkowits ◽  
Lindsay Brubaker
2020 ◽  
Vol 19 ◽  
pp. 153303382098328
Author(s):  
Zhen-Hua Du ◽  
Yu Xia ◽  
Qing Yang ◽  
Song Gao

Background and Objective: We have previously reported that BRCA2 N372 H i.a.1342A>C heterozygous variation presented in platinum-resistant patients. This study aimed to further investigate the mechanism of BRCA2 N372 H mutation in the development of platinum resistance in ovarian cancer. Methods: The BRCA2 N372 H i.a.1342A>C was synthesized and used to exchange 1 wildtype allele followed by sequencing to confirm the mutant allele sequence. Plasmids were constructed and transfected into the OVCAR-3 cells after lentiviral packaging. BRCA2 N372 H mRNA was detected by qPCR. BRCA2 protein was assessed by immunoblotting. Binding of the BRCA2 to Rad51 was detected by immunofluorescence staining. Sensitivity of the cells to cisplatin treatment was assessed with CCK-8 assay. Results: It was found that expression of BRCA2 protein in ovarian cancer cells transfected with BRCA2 N372 H i.a.1342A>C gene (2.177 ± 0.003) was significantly increased compared to that of the cells transfected with lenti-EGFP only (1.227 ± 0.003, P < 0.001). Binding of the BRCA2 and Rad51 proteins was significantly increased in the cells with BRCA2 N372 H i.a.1342A>C mutation (3.542 ± 0.24) than that in the cells transfected with lenti-EGFP (1.29 ± 0.32) or empty cells (1.363 ± 0.32, P < 0.001). Cell viability significantly increased in the cells transfected with BRCA2 N372 H mutant gene. The IC50 value was significantly higher in the cells transfected with BRCA2 N372 H mutant gene (1.963 ± 0.04) than that of the cells transfected with lenti-EGFP (0.955 ± 0.03, P < 0.01) or empty cells (1.043 ± 0.007, P < 0.01). Conclusion: Over expression of mRNA and protein of BRCA2 was detected in the cells with BRCA2 N372 H i.a.1342A>C mutation but not in the lentivirus negative control (lenti-EGFP) or the cells without transfection (empty cells), which may lead to resistance to platinum-based drugs in ovarian cancer cells through homologous recombination repair pathway.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jing Li ◽  
Ruiqin Wu ◽  
Mingo M. H. Yung ◽  
Jing Sun ◽  
Zhuqing Li ◽  
...  

AbstractThe JAK2/STAT pathway is hyperactivated in many cancers, and such hyperactivation is associated with a poor clinical prognosis and drug resistance. The mechanism regulating JAK2 activity is complex. Although translocation of JAK2 between nucleus and cytoplasm is an important regulatory mechanism, how JAK2 translocation is regulated and what is the physiological function of this translocation remain largely unknown. Here, we found that protease SENP1 directly interacts with and deSUMOylates JAK2, and the deSUMOylation of JAK2 leads to its accumulation at cytoplasm, where JAK2 is activated. Significantly, this novel SENP1/JAK2 axis is activated in platinum-resistant ovarian cancer in a manner dependent on a transcription factor RUNX2 and activated RUNX2/SENP1/JAK2 is critical for platinum-resistance in ovarian cancer. To explore the application of anti-SENP1/JAK2 for treatment of platinum-resistant ovarian cancer, we found SENP1 deficiency or treatment by SENP1 inhibitor Momordin Ic significantly overcomes platinum-resistance of ovarian cancer. Thus, this study not only identifies a novel mechanism regulating JAK2 activity, but also provides with a potential approach to treat platinum-resistant ovarian cancer by targeting SENP1/JAK2 pathway.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua Tian ◽  
Li Yan ◽  
Li Xiao-fei ◽  
Sun Hai-yan ◽  
Chen Juan ◽  
...  

Abstract Purpose One major reason of the high mortality of epithelial ovarian cancer (EOC) is due to platinum-based chemotherapy resistance. Aberrant DNA methylation may be a potential mechanism underlying the development of platinum resistance in EOC. The purpose of this study is to discover potential aberrant DNA methylation that contributes to drug resistance. Methods By initially screening of 16 platinum-sensitive/resistant samples from EOC patients with reduced representation bisulfite sequencing (RRBS), the upstream region of the hMSH2 gene was discovered hypermethylated in the platinum-resistant group. The effect of hMSH2 methylation on the cellular response to cisplatin was explored by demethylation and knockdown assays in ovarian cancer cell line A2780. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry was employed to examine the methylation levels of hMSH2 upstream region in additional 40 EOC patient samples. RT-qPCR and IHC assay was used to detect the hMSH2 mRNA and protein expression in extended 150 patients. Results RRBS assay discovered an upstream region from − 1193 to − 1125 of hMSH2 was significant hypermethylated in resistant EOC patients (P = 1.06 × 10−14). In vitro analysis demonstrated that global demethylation increased cisplatin sensitivity along with a higher expression of the hMSH2 mRNA and protein. Knockdown hMSH2 reduced the cell sensitivity to cisplatin. MALDI-TOF mass spectrometry assay validated the strong association of hypermethylation of hMSH2 upstream region with platinum resistance. Spearman’s correlation analysis revealed a significantly negative connection between methylation level of hMSH2 upstream region and its expression. The Kaplan-Meier analyses showed the high methylation of hMSH2 promoter region, and its low expressions are associated with worse survival. In multivariable models, hMSH2 low expression was an independent factor predicting poor outcome (P = 0.03, HR = 1.91, 95%CI = 1.85–2.31). Conclusion The hypermethylation of hMSH2 upstream region is associated with platinum resistant in EOC, and low expression of hMSH2 may be an index for the poor prognosis.


2016 ◽  
Vol 142 (3) ◽  
pp. 539-547 ◽  
Author(s):  
Maria de Leon ◽  
Horacio Cardenas ◽  
Edyta Vieth ◽  
Robert Emerson ◽  
Matthew Segar ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3388
Author(s):  
Mona Alharbi ◽  
Andrew Lai ◽  
Shayna Sharma ◽  
Priyakshi Kalita-de Croft ◽  
Nihar Godbole ◽  
...  

Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen). Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs. Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and 6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease. These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity that confers carboplatin resistance on target cells. Furthermore, we propose that the expression of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of clinical utility in disease management.


2021 ◽  
Author(s):  
S Passek ◽  
T Link ◽  
K Frank ◽  
YD Vassileva ◽  
M Kramer ◽  
...  

2019 ◽  
Vol 57 (7) ◽  
pp. 1053-1062 ◽  
Author(s):  
Jan Dominik Kuhlmann ◽  
Issam Chebouti ◽  
Rainer Kimmig ◽  
Paul Buderath ◽  
Michael Reuter ◽  
...  

AbstractBackgroundExtracellular vesicle (EV)-associated microRNAs (miRNAs) have been suggested as promising biomarkers for blood-based cancer diagnosis. However, one of the major limitations for the use of EVs with diagnostic purpose is the lack of standardized EV-profiling techniques. In this regard, the objective of our study was to design an integrated next-generation sequencing (NGS)-based workflow for analyzing the signature of EV-associated miRNA in the plasma of platinum-resistant ovarian cancer patients.MethodsFor EV-extraction, different enrichment methods were compared (ExoQuick vs. exoRNeasy). NGS was performed with the Illumina platform.ResultsWe established an integrated NGS-based workflow, including EV-enrichment with the ExoQuick system, which resulted in an optimal RNA-yield and consistent small RNA libraries. We applied this workflow in a pilot cohort of clinically documented platinum-sensitive (n=15) vs. platinum-resistant (n=15) ovarian cancer patients, resulting in a panel of mature EV-associated miRNAs (including ovarian cancer associated miR-181a, miR-1908, miR-21, miR-486 and miR-223), which were differentially abundant in the plasma of platinum-resistant patients.ConclusionsThis is the first study, analyzing the profile of EV-associated miRNAs in platinum-resistant ovarian cancer patients. We provide rationale to further validate these miRNA candidates in an independent set of patients, in order to characterize their biomarker potential as predictors for platinum-resistance.


Sign in / Sign up

Export Citation Format

Share Document