scholarly journals Metyrapone, an inhibitor of cytochrome oxidases, does not affect viability in a neuroblastoma cell model of bilirubin toxicity

2014 ◽  
Vol 1 ◽  
pp. 197-202
Author(s):  
Maria N. Naguib Leerberg ◽  
Tomas N. Alme ◽  
Thor W.R. Hansen
2021 ◽  
Vol 11 (10) ◽  
pp. 1908-1917
Author(s):  
Rongkang Mai ◽  
Yiyao Cao ◽  
Huitian Yu ◽  
Yong Zheng ◽  
Juke Huang

80 male Wistar rats were stochastically assigned to Sham + Vehicle group, Sham + BUT group, PD + Vehicle group and PD + BUT group. Rotenone PD model rats were prepared by subcutaneous injection of rotenone sunflower oil emulsion 2 mg/(kg · d) for 5 consecutive weeks. Butylphthalide 80 mg/(kg · d) were given to the rats in Sham + BUT group and PD + BUT group by gavage from the first day of rotenone injection for 5 weeks. Subsequently, the motor retardation ability and the morphological changes of the substantia nigra (SN) of each group were evaluated. Meanwhile, the levels of neuronal injury, apoptosis, inflammation and oxidative stress in each group of rats were assayed. The impact of BUT treatment on miR-146a-5p expression and PI3K/AKT signal pathway in rat brain tissue was assayed. Finally, by constructing a PD cell model of the neurotoxin 6-hydroxydopamine (6-OHDA)-treated human neuroblastoma cell line SH-SY5Y, the in vitro anti-PD pharmacological effect of BUT was further verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chia-Ying Lien ◽  
Chen-Wen Lu ◽  
Chih-Hsiang Hsu ◽  
Tai-Yuan Chuang ◽  
Li-Yu Su ◽  
...  

The study mainly investigated the effects of Chinese veterinary medicine B307 in cardiac and motor functions in animal models of pigeons and mice. Related cellular mechanisms were also studied in the neuroblastoma cell model of SH-SY5Y. Cardiac functions of pigeons and mice were examined by using moorFLPI Laser color Doppler imager and M-mode echocardiography, and motor functions were examined by using muscle electrical stimulation and force recording in the isolated breast muscle. Intracellular calcium levels and electrical activity of SH-SY5Y cells were examined by using Fura 2-AM fluorescence and MED64 system separately. Our results in vivo found that those pigeons under oral B307 treatment obviously enhanced subcutaneous microcirculation and contractile force and prolonged fatigue time in their breast muscles. Those mice under oral B307 treatment obviously elevated ejection fraction and cardiac output in their hearts. Our results in vitro showed that those SH-SY5Y cells under B307 treatment obviously increased intracellular calcium mobilization and electrical activities. These results revealed that improvement of cardiac and motor functions under B307 treatments may be caused by increasing electrical activities and intracellular calcium levels in neuromuscular cells and a similar mechanism may also occur in muscle cells. Thus, we suggested that B307 can be a functional Chinese veterinary medicine for flying pigeons.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 348
Author(s):  
Raúl Bonne Hernández ◽  
Nadja C. de Souza-Pinto ◽  
Jos Kleinjans ◽  
Marcel van Herwijnen ◽  
Jolanda Piepers ◽  
...  

Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.


Author(s):  
Alix C. Thomson ◽  
Teresa Schuhmann ◽  
Tom A. de Graaf ◽  
Alexander T. Sack ◽  
Bart P. F. Rutten ◽  
...  

AbstractDespite the widespread use of the SH-SY5Y human neuroblastoma cell line in modeling human neurons in vitro, protocols for growth, differentiation and experimentation differ considerably across the literature. Many studies fully differentiate SH-SY5Y cells before experimentation, to investigate plasticity measures in a mature, human neuronal-like cell model. Prior to experimentation, serum is often removed from cell culture media, to arrest the cell growth cycle and synchronize cells. However, the exact effect of this serum removal before experimentation on mature, differentiated SH-SY5Y cells has not yet been described. In studies using differentiated SH-SY5Y cells, any effect of serum removal on plasticity markers may influence results. The aim of the current study was to systematically characterize, in differentiated, neuronal-like SH-SY5Y cells, the potentially confounding effects of complete serum removal in terms of morphological and gene expression markers of plasticity. We measured changes in commonly used morphological markers and in genes related to neuroplasticity and synaptogenesis, particularly in the BDNF-TrkB signaling pathway. We found that complete serum removal from already differentiated SH-SY5Y cells increases neurite length, neurite branching, and the proportion of cells with a primary neurite, as well as proportion of βIII-Tubulin and MAP2 expressing cells. Gene expression results also indicate increased expression of PSD95 and NTRK2 expression 24 h after serum removal. We conclude that serum deprivation in differentiated SH-SY5Y cells affects morphology and gene expression and can potentially confound plasticity-related outcome measures, having significant implications for experimental design in studies using differentiated SH-SY5Y cells as a model of human neurons.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 894
Author(s):  
Friederike Hartwig ◽  
Monika Köll-Weber ◽  
Regine Süss

Preclinical in vitro studies of drug candidates for anticancer therapy are generally conducted on well-established 2D cell models. Unfortunately, these models are unable to mimic the properties of in vivo tumors. However, in vitro 3D models (spheroids) have been proven to be superior in reflecting the tumor microenvironment. Diethyldithiocarbamate (DDC−) is the active metabolite of Disulfiram, an approved drug for alcoholism and repurposed for cancer treatment. DDC− binds copper in a molar ratio of 2:1 resulting in a water-insoluble Cu(DDC)2 complex exhibiting anticancer activities. Delivery of the Cu(DDC)2 complex using nanoparticulate carriers provides decisive advantages for a parental application. In this study, an injectable liposomal Cu(DDC)2 formulation was developed and the toxicity was compared with a 2D neuroblastoma and a 3D neuroblastoma cell model. Our results indicate that Cu(DDC)2 liposomes complied with the size requirements of nanoparticles for intravenous injection and demonstrated high drug to lipid ratios as well as colloidal stability upon storage. Furthermore, an efficient cytotoxic effect on neuroblastoma 2D cell cultures and a very promising and even more pronounced effect on 3D cell cultures in terms of neuroblastoma monoculture and neuroblastoma co-culture with primary cell lines was proven, highly encouraging the use of Cu(DDC)2 liposomes for anticancer therapy.


2017 ◽  
Vol 41 (4) ◽  
pp. 1649-1660 ◽  
Author(s):  
Paola Maura Tricarico ◽  
Alessandra Romeo ◽  
Rossella Gratton ◽  
Sergio Crovella ◽  
Fulvio Celsi

Background/Aims: Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. Methods: SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. Results: MVK mutants’ over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. Conclusions: We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation.


Sign in / Sign up

Export Citation Format

Share Document