Ice-Core Pollen Record of Climatic Changes in the Central Andes during the last 400 yr

2005 ◽  
Vol 64 (2) ◽  
pp. 272-278 ◽  
Author(s):  
Kam-biu Liu ◽  
Carl A. Reese ◽  
Lonnie G. Thompson

AbstractThis paper presents a high-resolution ice-core pollen record from the Sajama Ice Cap, Bolivia, that spans the last 400 yr. The pollen record corroborates the oxygen isotopic and ice accumulation records from the Quelccaya Ice Cap and supports the scenario that the Little Ice Age (LIA) consisted of two distinct phases�"a wet period from AD 1500 to 1700, and a dry period from AD 1700 to 1880. During the dry period xerophytic shrubs expanded to replace puna grasses on the Altiplano, as suggested by a dramatic drop in the Poaceae/Asteraceae (P/A) pollen ratio. The environment around Sajama was probably similar to the desert-like shrublands of the Southern Bolivian Highlands and western Andean slopes today. The striking similarity between the Sajama and Quelccaya proxy records suggests that climatic changes during the Little Ice Age occurred synchronously across the Altiplano.

1992 ◽  
Vol 16 ◽  
pp. 21-24 ◽  
Author(s):  
Yao Tandong ◽  
L. G. Thompson

Α δ18O record from Dunde Ice Cap, located in the Qilian mountains on the northeastern margin of the Tibetan Plateau, has been analyzed and interpreted. With an ice temperature of –7.3°C at a depth of 10 m and –4.7°C at the bottom of the ice cap, and an accumulation rate of 400 mm a−1, the Dunde core has provided interesting results. The upper part of this core, core D-l, can be easily dated by a combination of δ18O, microparticle concentration and conductivity. It can also be dated as far back as 4550 BP by counting dust layers in ice. Based on the time scale established by the above methods and on the δ18O–temperature relation, the δ18O fluctuations in the upper 120 m of the core can be interpreted as mainly due to climatic changes during the past ~ 5000 years. The warmest periods in the past ~ 5000 years in the core were found to be centered on the present, 3000, and 4100 BP, and the colder periods center around 500, 1200, 4000, and 4500 BP. It is clear from the ice-core record that the Little Ice Age was only one of many cold periods in the past, although it was the coldest period in the past 500 years.


1992 ◽  
Vol 16 ◽  
pp. 21-24 ◽  
Author(s):  
Yao Tandong ◽  
L. G. Thompson

Α δ18O record from Dunde Ice Cap, located in the Qilian mountains on the northeastern margin of the Tibetan Plateau, has been analyzed and interpreted. With an ice temperature of –7.3°C at a depth of 10 m and –4.7°C at the bottom of the ice cap, and an accumulation rate of 400 mm a−1, the Dunde core has provided interesting results. The upper part of this core, core D-l, can be easily dated by a combination of δ18O, microparticle concentration and conductivity. It can also be dated as far back as 4550 BP by counting dust layers in ice. Based on the time scale established by the above methods and on the δ18O–temperature relation, the δ18O fluctuations in the upper 120 m of the core can be interpreted as mainly due to climatic changes during the past ~ 5000 years. The warmest periods in the past ~ 5000 years in the core were found to be centered on the present, 3000, and 4100 BP, and the colder periods center around 500, 1200, 4000, and 4500 BP. It is clear from the ice-core record that the Little Ice Age was only one of many cold periods in the past, although it was the coldest period in the past 500 years.


1990 ◽  
Vol 14 ◽  
pp. 199-204 ◽  
Author(s):  
Ellen Mosley-Thompson ◽  
Lonnie G. Thompson ◽  
Pieter M. Grootes ◽  
N. Gundestrup

The 550-year records of δ18O and dust concentrations from Siple Station, Antarctica suggest warmer and less dusty atmospheric conditions from 1600 to 1830 A.D. which encompasses much of the northern hemisphere Little Ice Age (LIA). Dust and δ18O data from South Pole Station indicate that the opposite conditions (e.g. cooler and more dusty) were prevalent there during the LIA. Meteorological data from 1945–85 show that the LIA temperature opposition between Amundsen-Scott and Siple, inferred from δ18O, is consistent with the present spatial distribution of surface temperature. There is some observational evidence suggesting that under present conditions stronger zonal westerlies produce a temperature pattern similar to that of the LIA. These regional differences demonstrate that a suite of spatially distributed, high resolution ice-core records will be necessary to characterize the LIA in Antarctica


Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Florian Adolphi ◽  
Jürg Beer ◽  
Nicolas Brehm ◽  
...  

<p>The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (<sup>14</sup>C) and ice-core beryllium-10 (<sup>10</sup>Be). Here we present the highest temporally resolved dataset of <sup>14</sup>C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (±8, 2-σ), allowing precise alignment of ice-core records across this period. We identify a substantial increase in <sup>14</sup>C and <sup>10</sup>Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.</p>


2008 ◽  
Vol 54 (184) ◽  
pp. 125-130 ◽  
Author(s):  
Satoru Yamaguchi ◽  
Renji Naruse ◽  
Takayuki Shiraiwa

AbstractBased on the field data at Koryto glacier, Kamchatka Peninsula, Russia, we constructed a one-dimensional numerical glacier model which fits the behaviour of the glacier. The analysis of meteorological data from the nearby station suggests that the recent rapid retreat of the glacier since the mid-20th century is likely to be due to a decrease in winter precipitation. Using the geographical data of the glacier terminus variations from 1711 to 1930, we reconstructed the fluctuation in the equilibrium-line altitude by means of the glacier model. With summer temperatures inferred from tree-ring data, the model suggests that the winter precipitation from the mid-19th to the early 20th century was about 10% less than that at present. This trend is close to consistent with ice-core results from the nearby ice cap in the central Kamchatka Peninsula.


1972 ◽  
Vol 109 (1) ◽  
pp. 17-24 ◽  
Author(s):  
N. A. Mörner

SummaryThe 18 curve from the 1390 m long ice core from Camp Century, Greenland, shows climatic changes that are easily correlated with known glacial and non-glacial events of North America and north Europe and are thus indirectly dated. With a known chronology, the glacial dynamic changes of the Greenland Ice Sheet can be calculated for the last 125,000 years. It is concluded that the dynamics of the Greenland Ice Sheet have changed drastically during this period and that these changes are directly related to major changes of climate and extension of the Wisconsin and Weichselian glaciations. Logarithmic time scales earlier applied to this curve must therefore be incorrect.


1987 ◽  
Vol 28 (1) ◽  
pp. 50-60 ◽  
Author(s):  
Wang Fu-Bao ◽  
C. Y. Fan

AbstractClimatic changes in the Qinghai-Xizang Plateau of China were studied by analyzing the composition of peat and layers of sand and gravel distributed along the southern slopes of Nianqing-Tanggula and Gangdise Mountains, cross sections of deposits near a number of interior lakes in Xizang, past glacial variations on the southern slope of Nianqing-Tanggula Mountain, and landform changes south of the Yaluzangbu River. Such geologic evidence suggests a division of five climatic periods since the beginning of the Holocene: (1) The Wumadung interval, 10,000–7500 yr B.P., slightly cold and dry; (2) Qilongduo interval, 7500-3000 yr B.P., warm and moist; (3) the mid-Neoglacial period, 3000-1500 yr B.P., cold, except between 2500 and 200 yr B.P. when it was warmer; (4) the Dawelong interval, 1500-300 yr B.P., mild; and (5) the Little Ice Age, 300-0 yr B.P., cold. These changes progressed in a similar but not identical pattern as those in the northeastern part of China and in the northern region of Europe.


2000 ◽  
Vol 54 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Jocelyne C. Bourgeois ◽  
Roy M. Koerner ◽  
Konrad Gajewski ◽  
David A. Fisher

A Holocene record of pollen deposition was obtained from an ice core drilled through the Agassiz Ice Cap. The pollen records long-range atmospheric transport to the ice cap. Pollen concentrations were highest in the early Holocene (∼15 grains/L), decreased in the mid-Holocene (∼6 grains/L), and increased in the late Holocene (∼9 grains/L). In the early Holocene, the higher concentration of tree pollen at a time when large parts of Canada were still ice-covered, and when forest was generally farther away, implies that atmospheric circulation was stronger than at present. Following deglaciation, as vegetation migrated north in central and eastern Canada, sources of pollen were closer to the Agassiz Ice Cap. However, the concentration of tree pollen decreased on the ice cap. This was followed by several relatively rapid changes after 3500 yr ago. Until ca. 3500 yr ago, the pollen concentration curves resembled the ice core δ18O and summer melt layer curves, both regarded as temperature proxies.


1986 ◽  
Vol 26 (1) ◽  
pp. 27-48 ◽  
Author(s):  
Stephen C. Porter

Time series depicting mountain glacier fluctuations in the Alps display generally similar patterns over the last two centuries, as do chronologies of glacier variations for the same interval from elsewhere in the Northern Hemisphere. Episodes of glacier advance consistently are associated with intervals of high average volcanic aerosol production, as inferred from acidity variations in a Greenland ice core. Advances occur whenever acidity levels rise sharply from background values to reach concentrations ≥1.2 μequiv H+/kg above background. A phase lag of about 10–15 yr, equivalent to reported response lags of Alpine glacier termini, separates the beginning of acidity increases from the beginning of subsequent ice advances. A similar relationship, but based on limited and less-reliable historical data and on lichenometric ages, is found for the preceding 2 centuries. Calibrated radiocarbon dates related to advances of non-calving and non-surging glaciers during the earlier part of the Little Ice Age display a comparable consistent pattern. An interval of reduced acidity values between about 1090 and 1230 A.D. correlates with a time of inferred glacier contraction during the Medieval Optimum. The observed close relation between Noothern Hemisphere glacier fluctuations and variations in Greenland ice-core acidity suggests that sulfur-rich aerosols generated by volcanic eruptions are a primary forcing mechanism of glacier fluctuations, and therefore of climate, on a decadal scale. The amount of surface cooling attributable to individual large eruptions or to episodes of eruptions is simlar to the probable average temperature reduction during culminations of Little Ice Age alacier advances (ca. 0.5°–1.2°C), as inferred from depression of equilibrium-line altitudes.


Sign in / Sign up

Export Citation Format

Share Document