The influence of seasonal precipitation and temperature regimes on lake levels in the northeastern United States during the Holocene

2006 ◽  
Vol 65 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Bryan Shuman ◽  
Jeffrey P. Donnelly

AbstractAMS–dated sediment cores combined with ground–penetrating radar profiles from two lakes in southeastern Massachusetts demonstrate that regional water levels rose and fell multiple times during the Holocene when the known climatic controls (i.e., ice extent and insolation) underwent unidirectional changes. The lakes were lowest between 10,000 and 9000 and between 5500 and 3000 cal yr B.P. Using a heuristic moisture-budget model, we explore the hypothesis that changes in seasonal precipitation regimes, driven by monotonic trends in ice extent and insolation, plausibly explain the multiple lake-level changes. Simulated lake levels resulting from low summer precipitation rates match observed low lake levels of 10,000–9000 cal yr B.P., whereas a model experiment that simply shifts the seasonality of the modern Massachusetts precipitation regime (i.e., moving the peak monthly precipitation from winter to summer) produces levels that are ∼2 m lower than today as observed for 5500–3000 cal yr B.P. The influence of the Laurentide ice sheet could explain dry summers before ca. 8000 cal yr B.P. A later shift from a summer-wet to a winter-wet moisture-balance regime could have resulted from insolation-driven changes in the influence of the Bermuda subtropical high. Temperature changes probably further modified lake levels by affecting snowmelt and transpiration.

2016 ◽  
Author(s):  
Xicai Pan ◽  
Daqing Yang ◽  
Yanping Li ◽  
Alan Barr ◽  
Warren Helgason ◽  
...  

Abstract. This study assesses a filtering procedure on accumulating precipitation gauge measurements, and quantifies the effects of bias corrections for wind-induced undercatch across four ecoclimatic regions in western Canada, including the permafrost regions of the Sub-arctic, the Western Cordillera, the Boreal Forest, and the Prairies. The bias corrections increased monthly precipitation by up to 163 % at windy sites with short vegetation, and sometimes modified the seasonal precipitation regime, whereas the increases were less than 13 % at sites shielded by forest. On a yearly basis, the increase of total precipitation ranged from 8 to 20 mm (3–4 %) at sites shielded by vegetation, and 60 to 384 mm (about 15–34 %) at open sites. In addition, the bias corrections altered the seasonal precipitation patterns at some windy sites with high snow percentage (> 50 %). This study highlights the need and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate/hydrology models.


2001 ◽  
Vol 55 (2) ◽  
pp. 133-139 ◽  
Author(s):  
Yves Bégin

AbstractThe dates of extreme water levels of two large lakes in northern Quebec have been recorded over the last century by ice scars on shoreline trees and sequences of reaction wood in shore trees tilted by wave erosion. Ice-scar chronologies indicate high water levels in spring, whereas tree-tilting by waves is caused by summer high waters. A major increase in both the amplitude and frequency of ice floods occurred in the 1930s. No such change was indicated by the tree-tilting chronologies, but wave erosion occurred in exceptionally rainy years. According to the modern record, spring lake-level rise is due to increased snowfalls since the 1930s. However, the absence of erosional marks in a large number of years since 1930 suggests a high frequency of low-water-level years resulting from dry conditions. Intercalary years with very large numbers of marked trees (e.g., 1935) indicate that the interannual range of summer lake levels has increased since the 1930s. Increased lake-flood frequency is postulated to be related to a slower expansion of arctic anticyclones, favoring the passage of cyclonic air masses over the area and resulting in abundant snowfall in early winter. Conditions in summer are due to the rate of weakening of the anticyclones controlling the position of the arctic front in summer. This position influences the path of the cyclonic air masses, which control summer precipitation and consequently, summer lake levels in the area.


2021 ◽  
Author(s):  
Nikolina Ilijanić ◽  
Slobodan Miko ◽  
Ozren Hasan ◽  
Dea Brunović ◽  
Martina Šparica Miko ◽  
...  

<p>Lake Visovac is a tufa barrier lake on the Krka River between Roški slap (60 m asl) and Skradinski buk (46 m absl) waterfalls, included in the Krka national park as primarily unaltered area of exceptional natural value. Paleolimnological research was conceived to address a lake evolution and depositional environments through the geophysical survey and collection of the lake sediment cores. A high-resolution bathymetric map was obtained using a multibeam sonar. The average lake depth varies between 20 and 25 m. Sediment cores were investigated to extract physical properties, sedimentological, mineralogical, geochemical and paleoecological records constrained by the radiocarbon chronology, to understand what was happening to both the landscapes and lakescapes of Lake Visovac during the last 2.000 cal yr.</p><p>Significant findings of the project are geomorphological features on the lake bottom: submerged sinkholes of various sizes (up to 40 m deep); submerged tufa barriers in the area of Kalički kuk (southern part of Lake Visovac) at the depths of 15 and 17 m, followed by a series of buried cascade tufa barriers at the depth of 25 m covered with up to 10 m of Holocene lake sediments; submerged vertical tufa barrier up to 32 m-high near the mouth of Čikola River; submerged landslides, small (river) fan structures characterized by sediment waves. Ground-penetrating-radar (GPR) data have been acquired due to the presence of gas-saturated sediments over a large area of the lake, that limited the use of high-resolution acoustic profiling. A total thickness of sediments is up to 40 m. High resolution paleoenvironmental record through the Late Holocene gives evidence of high sedimentation rates in Lake Visovac, variable soil erosion impact on lake sediment composition and carbonate authigenic sedimentation. Higher organic carbon is observed in the last 50 years due to changes in land cover and reforestation. Pleistocene lake sediment outcrops occur up to 20 m above the present lake levels indicating higher lake levels as a consequence of higher elevation of tuffa barriers. Kalički kuk, which lies up to 20 m above present lake level, is a remnant of these barriers which have been dated to MIS5. Results allow us to interpret the environmental and evolutionary dynamics of Lake Visovac in the following way: lake level more than 20 m higher than today in mid-Pleistocene with significantly larger lake volume in Lake Visovac, with active Kalički kuk and Skradinski buk waterfalls; lower lake-level at the beginning of the Holocene when several small lakes existed in isolated basins in the area of Lake Visovac. The tufa barrier at Skradinski buk started to grow faster than the Kalički kuk barriers and waterfalls resulting in their flooding and submergence during the Holocene. The tufa barrier at Skradinski buk has grown 15 m since then. This study demonstrates the role of geomorphological lakebed characteristics in reshaping our understanding of the environmental changes and the future of Lake Visovac.</p><p>The research was conducted as part of the project funded by the Krka National Park and CSF funded QMAD project (IP-04-2019-8505).</p>


2021 ◽  
Author(s):  
Andressa Cardoso ◽  
Ilana Wainer

<p>Tropical Atlantic variability modes can influence atmospheric circulation impacting the precipitation regimes over South American and the intensity of the meteorological systems associated. The objective of this work was to analyse the centennial variability and trends of the zonal and meridional modes in the Tropical Atlantic Ocean and their influences in the precipitation, focusing on the North and Northeast of Brazil. The zonal mode was estimated using the ATL3 index, calculated by the monthly sea surface temperature anomaly (SSTa) within 3ºS-3º N and 20ºW-0.  The AMM index represents the meridional mode and was obtained by the difference of the monthly SSTa between the North (5-20ºN and 60ºW-10ºE) and South (20ºS-5ºN and 60ºW-10ºE) Atlantic.  The indices were calculated for three reanalyses, NOAA ERSST v4, ERA20C and ERA-Interim, and compared to the observational dataset OISSTV2 using correlation for the 1982-2010 period. The results showed a positive trend in both indices considering the period of 1900-2010 for the two centennial reanalyses (NOAA ERSST v4 and ERA20C). However, the trend is higher for the ATL3 index and lower for the AMM considering the NOAA reanalysis. The monthly precipitation was also used to analyse the relationship between the indices and precipitation pattern. The correlation between ATL3 and AMM and the precipitation field using the NOAA reanalysis showed that ATL3 positively influences rain over northeastern Brazil, throughout the Tropical South Atlantic, and northwestern Africa between 1900 and 2010. The opposite is observed relative to AMM, once anomalies of negative (positive) precipitation in the Southern (Northern) Hemisphere are related to a positive SSTa in the region. These results may be related to the most intense SSTa in the northern tropical Atlantic, which shifts the ITCZ, promoting more precipitation further north, and favors the hurricane season All reanalyses represented the indices in agreement with observations, however, the statistical parameters were better for with the ERA-Interim. A possible reason is that ERA-Interim is a newer reanalysis, with more observed assimilated data. Moreover, it has a finer resolution when compared to the other datasets, which contributes to a better representation of the precipitation patterns.  In conclusion, ATL3 positively influences precipitation in the North and Northeast Brazilian regions, as the warmer SST drives the position of the ITCZ. Therefore, the observed increasing trend in the precipitation over this region over the past years was associated with the increase in SSTa over the Tropical Atlantic, which may favor precipitation in the north and northeast of Brazil.</p>


2021 ◽  
pp. 1-12
Author(s):  
Donya C. Danesh ◽  
Cale A.C. Gushulak ◽  
Melissa T. Moos ◽  
Moumita Karmakar ◽  
Brian F. Cumming

Abstract Pollen and diatom assemblages from well-dated sediment cores from three lakes forming a west-to-east transect across the boreal forest in northwest Ontario (Canada) were used to evaluate the timing and nature of the movement of the prairie–forest ecotone (PFE) across the Holocene. Changes in vegetation, temperature, and effective moisture were inferred from pollen and pollen-based transfer functions. Analyses indicated site-specific vegetational and climate changes across short spatial distances, with prolonged prairie-like conditions during the middle Holocene at the westernmost site. Increased reconstructed temperatures at this westernmost site occurred from ~9000 to 3000 cal yr BP, alongside increases in diatom-inferred lake levels beginning at ~6000 cal yr BP. The abundance of Quercus peaked concurrently with rising lake levels before declining to trace levels by ~3000 cal yr BP. Increases in the abundance of non-arboreal pollen between ~8500 and ~4500 cal yr BP at the more eastern lakes suggest relatively delayed and truncated PFE influence, before the reestablishment of primarily boreal taxa by ~4500 cal yr BP, coincident with diatom-inferred increases in lake levels. This study shows that the PFE moved both farther east and north than previously determined, but generally agrees with established patterns in vegetation from other studied regions along the PFE.


2013 ◽  
Vol 9 (3) ◽  
pp. 1233-1252 ◽  
Author(s):  
O. Peyron ◽  
M. Magny ◽  
S. Goring ◽  
S. Joannin ◽  
J.-L. de Beaulieu ◽  
...  

Abstract. Lake-level records from Italy suggest that patterns of precipitation in the central Mediterranean during the Holocene were divided between the north and south, but a scarcity of reliable palaeoclimatic records in the north and central-southern Mediterranean means new evidence is needed to validate this hypothesis. We provide robust quantitative estimates of Holocene climate in the Mediterranean region using four high-resolution pollen records from northern (Lakes Ledro and Accesa) and southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the palaeoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based weighted averaging, weighted-average partial least-squares regression, modern analogue technique, and the non-metric multidimensional scaling/generalized additive model methods. We use independent lake-level data to validate the precipitation reconstructions. Our results support a climatic partition between northern and southern Italy during the Holocene, confirming the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. The northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake levels during the early to mid-Holocene, while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake levels at the same time. Both pollen-inferred precipitation and lake levels indicate the opposite pattern during the late Holocene, a maximum in northern Italy and a minimum in southern Italy/Sicily. Summer temperatures show the same partitioning, with warm conditions in northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the late Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy show strong similarities with those recognized from the Aegean Sea, and more generally speaking in the eastern Mediterranean.


2013 ◽  
Vol 9 (5) ◽  
pp. 2023-2042 ◽  
Author(s):  
N. Combourieu-Nebout ◽  
O. Peyron ◽  
V. Bout-Roumazeilles ◽  
S. Goring ◽  
I. Dormoy ◽  
...  

Abstract. The high-resolution multiproxy study of the Adriatic marine core MD 90-917 provides new insights to reconstruct vegetation and regional climate changes over the southcentral Mediterranean during the Younger Dryas (YD) and Holocene. Pollen records show the rapid forest colonization of the Italian and Balkan borderlands and the gradual installation of the Mediterranean association during the Holocene. Quantitative estimates based on pollen data provide Holocene precipitations and temperatures in the Adriatic Sea using a multi-method approach. Clay mineral ratios from the same core reflect the relative contributions of riverine (illite and smectite) and eolian (kaolinite) contributions to the site, and thus act as an additional proxy with which to evaluate precipitation changes in the Holocene. Vegetation climate reconstructions show the response to the Preboreal oscillation (PBO), most likely driven by changes in temperature and seasonal precipitation, which is linked to increasing river inputs from Adriatic rivers recorded by increase in clay mineral contribution to marine sediments. Pollen-inferred temperature declines during the early–mid Holocene, then increases during the mid–late Holocene, similar to southwestern Mediterranean climatic patterns during the Holocene. Several short vegetation and climatic events appear in the record, indicating the sensitivity of vegetation in the region to millennial-scale variability. Reconstructed summer precipitation shows a regional maximum (170–200 mm) between 8000 and 7000 similar to the general pattern across southern Europe. Two important shifts in vegetation occur at 7700 cal yr BP (calendar years before present) and between 7500 and 7000 cal yr BP and are correlated with increased river inputs around the Adriatic Basin respectively from the northern (7700 event) and from the central Adriatic borderlands (7500–7000 event). During the mid-Holocene, the wet summers lead to permanent moisture all year resulting in a homogeneous seasonal precipitation regime. After 6000 cal yr BP, summer precipitation decreases towards present-day values while winter precipitation rises regularly showing the setting up of Mediterranean climate conditions. Multiproxy evidence from core MD 90-917 provides a deeper understanding of the role of precipitation and particularly the seasonality of precipitation in mediating vegetation change in the central Mediterranean during the Holocene.


2016 ◽  
Vol 10 (5) ◽  
pp. 2347-2360 ◽  
Author(s):  
Xicai Pan ◽  
Daqing Yang ◽  
Yanping Li ◽  
Alan Barr ◽  
Warren Helgason ◽  
...  

Abstract. This study assesses a filtering procedure on accumulating precipitation gauge measurements and quantifies the effects of bias corrections for wind-induced undercatch across four ecoclimatic regions in western Canada, including the permafrost regions of the subarctic, the Western Cordillera, the boreal forest, and the prairies. The bias corrections increased monthly precipitation by up to 163 % at windy sites with short vegetation and sometimes modified the seasonal precipitation regime, whereas the increases were less than 13 % at sites shielded by forest. On a yearly basis, the increase of total precipitation ranged from 8 to 20 mm (3–4 %) at sites shielded by vegetation and 60 to 384 mm (about 15–34 %) at open sites. In addition, the bias corrections altered the seasonal precipitation patterns at some windy sites with high snow percentage ( > 50 %). This study highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate–hydrology models.


2012 ◽  
Vol 8 (6) ◽  
pp. 5817-5866 ◽  
Author(s):  
O. Peyron ◽  
M. Magny ◽  
S. Goring ◽  
S. Joannin ◽  
J.-L. de Beaulieu ◽  
...  

Abstract. Lake-level records from Italy suggest a north–south climatic partition in the Central Mediterranean during the Holocene with respect to precipitation, but the scarcity of reliable palaeoclimatic records in the North and Central-Southern Mediterranean means new evidence is needed to validate this hypothesis. Here, we provide robust quantitative estimates of Holocene climate in the Mediterranean region based on four high-resolution pollen records from Northern (Lakes Ledro and Accesa) and Southern (Lakes Trifoglietti and Pergusa) Italy. Multiple methods are used to provide an improved assessment of the paleoclimatic reconstruction uncertainty. The multi-method approach uses the pollen-based Weighted Averaging, Weighted-Average-Partial-Least-Squares regression, Modern Analogues Technique, and the Non-Metric-Multidimensional Scaling/Generalized-Additive-Model methods. The precipitation seasonality reconstructions are validated by independent lake-level data, obtained from the same records. A climatic partition between the north and the south during the Holocene confirms the hypothesis of opposing mid-Holocene summer precipitation regimes in the Mediterranean. During the early-to-mid-Holocene the northern sites (Ledro, Accesa) are characterized by minima for summer precipitation and lake-levels while the southern sites (Trifoglietti, Pergusa) are marked by maxima for precipitation and lake-levels. During the late Holocene, both pollen-inferred precipitation and lake-levels indicate the opposite pattern, a maximum in North Italy and a minimum in Southern Italy/Sicily. Summer temperatures also show partitioning, with warm conditions in Northern Italy and cool conditions in Sicily during the early/mid-Holocene, and a reversal during the Late-Holocene. Comparison with marine cores from the Aegean Sea suggests that climate trends and gradients observed in Italy shows strong similarities with those recognized from the Aegean Sea, and more generally speaking in the Eastern Mediterranean.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


Sign in / Sign up

Export Citation Format

Share Document