Modes of variability in the Tropical Atlantic and its influences on the precipitation regime in Brazil

Author(s):  
Andressa Cardoso ◽  
Ilana Wainer

<p>Tropical Atlantic variability modes can influence atmospheric circulation impacting the precipitation regimes over South American and the intensity of the meteorological systems associated. The objective of this work was to analyse the centennial variability and trends of the zonal and meridional modes in the Tropical Atlantic Ocean and their influences in the precipitation, focusing on the North and Northeast of Brazil. The zonal mode was estimated using the ATL3 index, calculated by the monthly sea surface temperature anomaly (SSTa) within 3ºS-3º N and 20ºW-0.  The AMM index represents the meridional mode and was obtained by the difference of the monthly SSTa between the North (5-20ºN and 60ºW-10ºE) and South (20ºS-5ºN and 60ºW-10ºE) Atlantic.  The indices were calculated for three reanalyses, NOAA ERSST v4, ERA20C and ERA-Interim, and compared to the observational dataset OISSTV2 using correlation for the 1982-2010 period. The results showed a positive trend in both indices considering the period of 1900-2010 for the two centennial reanalyses (NOAA ERSST v4 and ERA20C). However, the trend is higher for the ATL3 index and lower for the AMM considering the NOAA reanalysis. The monthly precipitation was also used to analyse the relationship between the indices and precipitation pattern. The correlation between ATL3 and AMM and the precipitation field using the NOAA reanalysis showed that ATL3 positively influences rain over northeastern Brazil, throughout the Tropical South Atlantic, and northwestern Africa between 1900 and 2010. The opposite is observed relative to AMM, once anomalies of negative (positive) precipitation in the Southern (Northern) Hemisphere are related to a positive SSTa in the region. These results may be related to the most intense SSTa in the northern tropical Atlantic, which shifts the ITCZ, promoting more precipitation further north, and favors the hurricane season All reanalyses represented the indices in agreement with observations, however, the statistical parameters were better for with the ERA-Interim. A possible reason is that ERA-Interim is a newer reanalysis, with more observed assimilated data. Moreover, it has a finer resolution when compared to the other datasets, which contributes to a better representation of the precipitation patterns.  In conclusion, ATL3 positively influences precipitation in the North and Northeast Brazilian regions, as the warmer SST drives the position of the ITCZ. Therefore, the observed increasing trend in the precipitation over this region over the past years was associated with the increase in SSTa over the Tropical Atlantic, which may favor precipitation in the north and northeast of Brazil.</p>

2003 ◽  
Vol 21 (3) ◽  
pp. 819-832 ◽  
Author(s):  
L. Morala ◽  
A. Serrano ◽  
J. A. Garcia

Abstract. A spectral analysis of the time series corresponding to the main monthly precipitation regimes of the Iberian Peninsula was performed using two methods, the Multi-Taper Method and Monte Carlo Singular Spectrum Analysis. The Multi-Taper Method gave a preliminary view of the presence of signals in some of the time series. Monte Carlo Singular Spectrum Analysis discriminated between potential oscillations and noise. From the results of the two methods it is concluded that there exist three significant quasi-oscillations at the 95% level of confidence: a 5.0 year quasi-oscillation and a long-term trend in the Atlantic pattern of March, a 3.2 year quasi-oscillation in the Cantabrian pattern of January, and a 4.0 year quasi-oscillation in the Catalonian pattern of February. These quasi-oscillations might be related to climatic variations with similar periodicities over the North Atlantic Ocean. The possible simultaneity of high values of precipitation generated by the significant quasi-oscillations and high sea–level pressures was studied by means of composite maps. It was found that high values of precipitation generated by the oscillations of the Atlantic patterns of January and March exist simultaneously with a specific high pressure structure over the North Atlantic Ocean, that allow cyclonic perturbations to cross the Iberian Peninsula. During the non-wet years, this high pressure structure moves northwards, keeping the track of the low pressure centers to the north, far from the Iberian Peninsula. On the other hand, high values of precipitation generated by the oscillation of the Cantabrian pattern of January exist simultaneously with a high pressure structure over the Galicia region and the Cantabrian Sea, that allow a northerly flow over the region. Also, a positive trend in the NAO index for March has been found, starting in the sixties, which is not evident for other winter months. This trend agrees with the decreasing trend found in the March Atlantic pattern.Key words. Meteorology and atmospheric dynamics (climatology; precipitation) Oceanography: general (climate and interannual variability)


2008 ◽  
Vol 12 (6) ◽  
pp. 1309-1321 ◽  
Author(s):  
T. Raziei ◽  
I. Bordi ◽  
L. S. Pereira

Abstract. The spatial distribution of the seasonal and annual precipitation was analyzed in western Iran using data from 140 stations covering the period 1965–2000. Applying the Precipitation Concentration Index (PCI), the intra-annual precipitation variability was also studied. Furthermore, nine precipitation-derived parameters were used to regionalize climate in western Iran using principal component analysis and clustering techniques. Results suggest that five spatially homogenous sub-regions can be identified characterized by different precipitation regimes. The spatial pattern of seasonal precipitation seems to be highly controlled by the wide latitudinal extent of the region and by the pronounced orographic relieves, and the time of occurrence of the maximum precipitation varies from spring in the north to winter in the south. The time variability of dry and wet periods in the identified sub-regions was analyzed using the Precipitation Index (PI) and the existence of any long-term trend was tested. Results show that the northern and southern regions of western Iran are characterized by different climatic variability. Furthermore, a negative long-term linear trend in the north and a weak positive trend in the south of the study area have been detected though they are not statistically significant.


2006 ◽  
Vol 65 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Bryan Shuman ◽  
Jeffrey P. Donnelly

AbstractAMS–dated sediment cores combined with ground–penetrating radar profiles from two lakes in southeastern Massachusetts demonstrate that regional water levels rose and fell multiple times during the Holocene when the known climatic controls (i.e., ice extent and insolation) underwent unidirectional changes. The lakes were lowest between 10,000 and 9000 and between 5500 and 3000 cal yr B.P. Using a heuristic moisture-budget model, we explore the hypothesis that changes in seasonal precipitation regimes, driven by monotonic trends in ice extent and insolation, plausibly explain the multiple lake-level changes. Simulated lake levels resulting from low summer precipitation rates match observed low lake levels of 10,000–9000 cal yr B.P., whereas a model experiment that simply shifts the seasonality of the modern Massachusetts precipitation regime (i.e., moving the peak monthly precipitation from winter to summer) produces levels that are ∼2 m lower than today as observed for 5500–3000 cal yr B.P. The influence of the Laurentide ice sheet could explain dry summers before ca. 8000 cal yr B.P. A later shift from a summer-wet to a winter-wet moisture-balance regime could have resulted from insolation-driven changes in the influence of the Bermuda subtropical high. Temperature changes probably further modified lake levels by affecting snowmelt and transpiration.


2008 ◽  
Vol 5 (4) ◽  
pp. 2133-2167 ◽  
Author(s):  
T. Raziei ◽  
I. Bordi ◽  
L. S. Pereira

Abstract. The spatial distribution of the seasonal and annual precipitation was analyzed in western Iran using data from 140 stations covering the period 1965–2000. Applying the Precipitation Concentration Index (PCI), the intra-annual precipitation variability was also studied. Furthermore, nine precipitation-derived parameters were used to regionalize climate in western Iran using principal component analysis and clustering techniques. Results suggest that five spatially homogenous sub-regions can be identified characterized by different precipitation regimes. The spatial pattern of seasonal precipitation seems to be highly controlled by the wide latitudinal extent of the region and by the pronounced orographic relieves, and the time of occurrence of the maximum precipitation varies from spring in the north to winter in the south. The time variability of dry and wet periods in the identified sub-regions was analyzed using the Precipitation Index (PI) and the existence of any long-term trend was tested. Results show that the northern and southern regions of western Iran are characterized by different climatic variability. Furthermore, a negative long-term linear trend in the north and a weak positive trend in the south of the study area have been detected though they are not statistically significant.


2020 ◽  
Vol 45 (2) ◽  
pp. 340-348
Author(s):  
James Lucas da Costa-Lima ◽  
Earl Celestino de Oliveira Chagas

Abstract—A synopsis of Dicliptera (Acanthaceae) for Brazil is presented. Six species are recognized: Dicliptera ciliaris, D. sexangularis, and D. squarrosa, widely distributed in South America; D. purpurascens, which ranges from the North Region of Brazil (in the state of Acre) to eastern Bolivia; D. gracilirama, a new species from the Atlantic Forest of northeastern Brazil; and D. granchaquenha, a new species recorded in dry and semideciduous forests in Bolivia and western Brazil, in the state of Mato Grosso do Sul. Furthermore, we propose new synonyms and designate lectotypes for eleven names. An identification key to the six accepted Dicliptera species in Brazil is provided.


2016 ◽  
Vol 13 (11) ◽  
pp. 3343-3357 ◽  
Author(s):  
Zun Yin ◽  
Stefan C. Dekker ◽  
Bart J. J. M. van den Hurk ◽  
Henk A. Dijkstra

Abstract. Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation–climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water–radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass is possible, which coincides with the observed regreening of the Sahara.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenjun Zhang ◽  
Feng Jiang ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Axel Timmermann

AbstractThe El Niño-Southern Oscillation (ENSO), the primary driver of year-to-year global climate variability, is known to influence the North Tropical Atlantic (NTA) sea surface temperature (SST), especially during boreal spring season. Focusing on statistical lead-lag relationships, previous studies have proposed that interannual NTA SST variability can also feed back on ENSO in a predictable manner. However, these studies did not properly account for ENSO’s autocorrelation and the fact that the SST in the Atlantic and Pacific, as well as their interaction are seasonally modulated. This can lead to misinterpretations of causality and the spurious identification of Atlantic precursors for ENSO. Revisiting this issue under consideration of seasonality, time-varying ENSO frequency, and greenhouse warming, we demonstrate that the cross-correlation characteristics between NTA SST and ENSO, are consistent with a one-way Pacific to Atlantic forcing, even though the interpretation of lead-lag relationships may suggest otherwise.


1998 ◽  
Vol 50 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Helge W. Arz ◽  
Jürgen Pätzold ◽  
Gerold Wefer

The stable isotope composition of planktonic foraminifera correlates with evidence for pulses of terrigenous sediment in a sediment core from the upper continental slope off northeastern Brazil. Stable oxygen isotope records of the planktonic foraminiferal species Globigerinoides sacculiferand Globigerinoides ruber(pink) reveal sub-Milankovitch changes in sea-surface hydrography during the last 85,000 yr. Warming of the surface water coincided with terrigenous sedimentation pulses that are inferred from high XRF intensities of Ti and Fe, and which suggest humid conditions in northeast Brazil. These tropical signals correlate with climatic oscillations recorded in Greenland ice cores (Dansgaard-Oeschger cycles) and in sediment cores from the North Atlantic (Heinrich events). Trade winds may have caused changes in the North Brazil Current that altered heat and salt flux into the North Atlantic, thus affecting the growth and decay of the large glacial ice sheets.


2021 ◽  
Author(s):  
Fanny Chenillat ◽  
Julien Jouanno ◽  
Serena Illig ◽  
Founi Mesmin Awo ◽  
Gaël Alory ◽  
...  

<div><span>Surface chlorophyll-<em>a </em>concentration (CHL-<em>a</em>) remotely observed by satellite shows a marked seasonal and interannual variability in the Tropical Atlantic, with potential consequences on the marine trophic web. Seasonal and interannual CHL-<em>a </em>variability peaks in boreal summer and shows maxima in the equatorial Atlantic region at 10˚W, spreading from 0 to 30˚W. In this study, we analyze how the remotely-sensed surface CHL-<em>a </em>responds to the leading climate modes affecting the interannual equatorial Atlantic variability over the 1998-2018 period, namely the Atlantic Zonal Mode (AZM) and the North Tropical Atlantic Mode (NTA, also known as the Atlantic Meridional Mode). The AZM is characterized by anomalous warming (or cooling) along the eastern equatorial band. In contrast, the NTA is characterized by an interhemispheric pattern of the sea surface temperature (SST), with anomalous warm (cold) conditions in the north tropical Atlantic region and weak negative (positive) SST anomalies south of the equator. We show that both modes significantly drive the interannual Tropical Atlantic surface CHL-<em>a </em>variability, with different timings and contrasted modulation on the eastern and western portions of the cold tongue area. Our results also reveal that the NTA slightly dominates (40%) the summer tropical Atlantic interannual variability over the last two decades, most probably because of a positive phase of the Atlantic multidecadal oscillation. For each mode of variability, we analyze an event characterized by an extreme negative sea surface temperature (SST) anomaly in the Atlantic equatorial band. Both modes are associated with a positive CHL-<em>a </em>anomaly at the equator. In 2002, a negative phase of the NTA led to cold SST anomaly and high positive CHL-<em>a </em>in the western portion of the cold tongue, peaking in June-July and lasting until the end of the year. In contrast, in 2005, a negative phase of the AZM drove cool temperature and positive CHL-<em>a </em>in the eastern equatorial band, with a peak in May-June and almost no signature after August. Such contrasted year to year conditions can affect the marine ecosystem by changing temporal and spatial trophic niches for pelagic predators, thus inducing significant variations for ecosystem functioning and fisheries.</span></div>


Sign in / Sign up

Export Citation Format

Share Document