A Comparison of Body Composition, Dietary Intake, Energy Expenditure and Activity Level in Normal Weight Children of Obese and Normal Weight Biological Mothers

1996 ◽  
Vol 96 (9) ◽  
pp. A76
Author(s):  
C.C. Francis ◽  
B.B. Alford ◽  
A.A. Bope
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Toru Shirahata ◽  
Hideaki Sato ◽  
Sanehiro Yogi ◽  
Kaiji Inoue ◽  
Mamoru Niitsu ◽  
...  

Abstract Background Physical inactivity due to cachexia and muscle wasting is well recognized as a sign of poor prognosis in chronic obstructive pulmonary disease (COPD). However, there have been no reports on the relationship between trunk muscle measurements and energy expenditure parameters, such as the total energy expenditure (TEE) and physical activity level (PAL), in COPD. In this study, we investigated the associations of computed tomography (CT)-derived muscle area and density measurements with clinical parameters, including TEE and PAL, in patients with or at risk for COPD, and examined whether these muscle measurements serve as an indicator of TEE and PAL. Methods The study population consisted of 36 male patients with (n = 28, stage 1–4) and at risk for (n = 8) COPD aged over 50 years. TEE was measured by the doubly labeled water method, and PAL was calculated as the TEE/basal metabolic rate estimated by the indirect method. The cross-sectional areas and densities of the pectoralis muscles, rectus abdominis muscles, and erector spinae muscles were measured. We evaluated the relationship between these muscle measurements and clinical outcomes, including body composition, lung function, muscle strength, TEE, and PAL. Results All the muscle areas were significantly associated with TEE, severity of emphysema, and body composition indices such as body mass index, fat-free mass, and trunk muscle mass. All trunk muscle densities were correlated with PAL. The product of the rectus abdominis muscle area and density showed the highest association with TEE (r = 0.732) and PAL (r = 0.578). Several trunk muscle measurements showed significant correlations with maximal inspiratory and expiratory pressures, indicating their roles in respiration. Conclusions CT-derived measurements for trunk muscles are helpful in evaluating physical status and function in patients with or at risk for COPD. Particularly, trunk muscle evaluation may be a useful marker reflecting TEE and PAL.


Author(s):  
Constanza Mosso ◽  
Victoria Halabi ◽  
Tamara Ortiz ◽  
Maria Isabel Hodgson

AbstractThe aim of this study was to assess dietary intake, nutritional status, body composition, and physical activity level in a group of Chilean children and adolescents with Type 1 diabetes mellitus (T1DM), compare these parameters with the recommendations of the International Society for Pediatric and Adolescent Diabetes (ISPAD), and determine the relationships between dietary intake, body composition, and diabetes control.A total of 30 patients with T1DM (aged 15.2±4.0 years) were included. Dietary intake was assessed using a 92-item quantitative food frequency questionnaire. Body composition was determined using dual-energy X-ray densitometry. Physical activity was assessed by means of a survey.The energy intake of these patients was derived from 21.4% protein, 48% carbohydrates, and 31.2% fat. The glycosylated hemoglobin (HbA1c) was significantly correlated with fat as grams per day (r: 0.363, p<0.05) and calories per day (r: 0.364, p<0.05). The mean body fat percentage in females was 31.2% and 20.2% in males (p < 0.01) and the mean amount of physical activity was 4.5±2.7 h per week.The study patients had a higher protein intake than recommended by ISPAD. Dietary carbohydrate intake was rather low, and dietary fat intake was the same as the limits recommended by ISPAD. Diabetic control was significantly correlated with protein, carbohydrates, fat, and sodium intake. The girls in the study had a higher percentage of body fat than the standard recommendations for their age. The level of physical activity was adequate.


2008 ◽  
Vol 295 (5) ◽  
pp. E1126-E1131 ◽  
Author(s):  
Kelly B. Scribner ◽  
Dorota B. Pawlak ◽  
Cristin M. Aubin ◽  
Joseph A. Majzoub ◽  
David S. Ludwig

A high-glycemic index (GI) diet has been shown to increase adiposity in rodents; however, the long-term metabolic effects of a low- and high-GI diet have not been examined. In this study, a total of 48 male 129SvPas mice were fed diets high in either rapidly absorbed carbohydrate (RAC; high GI) or slowly absorbed carbohydrate (SAC; low GI) for up to 40 wk. Diets were controlled for macronutrient and micronutrient content, differing only in starch type. Body composition and insulin sensitivity were measured longitudinally by DEXA scan and oral glucose tolerance test, respectively. Food intake, respiratory quotient, physical activity, and energy expenditure were assessed using metabolic cages. Despite having similar mean body weights, mice fed the RAC diet had 40% greater body fat by the end of the study and a mean 2.2-fold greater insulin resistance compared with mice fed the SAC diet. Respiratory quotient was higher in the RAC group, indicating comparatively less fat oxidation. Although no differences in energy expenditure were observed throughout the study, total physical activity was 45% higher for the SAC-fed mice after 38 wk of feeding. We conclude that, in this animal model, 1) the effect of GI on body composition is mediated by changes in substrate oxidation, not energy intake; 2) a high-GI diet causes insulin resistance; and 3) dietary composition can affect physical activity level.


1995 ◽  
Vol 73 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Jeroen H. H. L. M. Donkers ◽  
Elisabeth W. H. M. Fredrix ◽  
Piet oekhoudt

In adults, body mass (BM) and its components fat-free mass (FFM) and fat mass (FM) are normally regulated at a constant level. Changes in FM and FFM are dependent on energy intake (EI) and energy expenditure (EE). The body defends itself against an imbalance between EI and EE by adjusting, within limits, the one to the other. When, at a given EI or EE, energy balance cannot be reached, FM and FFM will change, eventually resulting in an energy balance at a new value. A model is described which simulates changes in FM and FFM using EI and physical activity (PA) as input variables. EI can be set at a chosen value or calculated from dietary intake with a database on the net energy of foods. PA can be set at a chosen multiple of basal metabolic rate (BMR) or calculated from the activity budget with a database on the energy cost of activities in multiples of BMR. BMR is calculated from FFM and FM and, if necessary, FFM is calculated from BM, height, sex and age, using empirical equations. The model uses existing knowledge on the adaptation of energy expenditure (EE) to an imbalance between EI and EE, and to resulting changes in FM and FFM. Mobilization and storage of energy as FM and FFM are functions of the relative size of the deficit (EI/EE) and of the body composition. The model was validated with three recent studies measuring EE at a fixed EI during an interval with energy restriction, overfeeding and exercise training respectively. Discrepancies between observed and simulated changes in energy stores were within the measurement precision of EI, EE and body composition. Thus the consequences of a change in dietary intake or a change in physical activity on body weight and body composition can be simulated.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2124
Author(s):  
Alice E. Disher ◽  
Kelly L. Stewart ◽  
Aaron J. E. Bach ◽  
Ian B. Stewart

Body water turnover is a marker of hydration status for measuring total fluid gains and losses over a 24-h period. It can be particularly useful in predicting (and hence, managing) fluid loss in individuals to prevent potential physical, physiological and cognitive declines associated with hypohydration. There is currently limited research investigating the interrelationship of fluid balance, dietary intake and activity level when considering body water turnover. Therefore, this study investigates whether dietary composition and energy expenditure influences body water turnover. In our methodology, thirty-eight males (19 sedentary and 19 physically active) had their total body water and water turnover measured via the isotopic tracer deuterium oxide. Simultaneous tracking of dietary intake (food and fluid) is carried out via dietary recall, and energy expenditure is estimated via accelerometery. Our results show that active participants display a higher energy expenditure, water intake, carbohydrate intake and fibre intake; however, there is no difference in sodium or alcohol intake between the two groups. Relative water turnover in the active group is significantly greater than the sedentary group (Mean Difference (MD) [95% CI] = 17.55 g·kg−1·day−1 [10.90, 24.19]; p = < 0.001; g[95% CI] = 1.70 [0.98, 2.48]). A penalised linear regression provides evidence that the fibre intake (p = 0.033), water intake (p = 0.008), and activity level (p = 0.063) predict participants’ relative body water turnover (R2= 0.585). In conclusion, water turnover is faster in individuals undertaking regular exercise than in their sedentary counterparts, and is, in part, explained by the intake of water from fluid and high-moisture content foods. The nutrient analysis of the participant diets indicates that increased dietary fibre intake is also positively associated with water turnover rates. The water loss between groups also contributes to the differences observed in water turnover; this is partly related to differences in sweat output during increased energy expenditure from physical activity.


2013 ◽  
Vol 96 (6) ◽  
pp. 579-585 ◽  
Author(s):  
Lívia G. Ferreira ◽  
Laís F. Santos ◽  
Lucilene R. Anastácio ◽  
Agnaldo S. Lima ◽  
Maria Isabel T.D. Correia

Sign in / Sign up

Export Citation Format

Share Document