Individual monitoring of ionising radiation: The impact of recent ICRP and ICRU Publications. Proceedings of a workshop held in Villigen, Switzerland, 5?7 may 1993 Edited by H. G. Menzel, T. O. Marshall, C. Wernli and M. Varma. Radiation Protection Dosimetry, Volume 54, Nos 3?4, 1994. (ISBN 1 870965 29 9.)

1995 ◽  
Vol 39 (2) ◽  
pp. 270-271
Author(s):  
D HUGHES
Redox Biology ◽  
2016 ◽  
Vol 9 ◽  
pp. 144-156 ◽  
Author(s):  
Calina Betlazar ◽  
Ryan J. Middleton ◽  
Richard B. Banati ◽  
Guo-Jun Liu

2017 ◽  
Vol 68 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Sandra Petrović ◽  
Vesna Vasić ◽  
Tatjana Mitrović ◽  
Saša Lazović ◽  
Andreja Leskovac

Abstract Undecylprodigiosin pigment (UPP) is reported to display cytotoxic activity towards various types of tumours. Nevertheless, its efficacy in modifying the cellular response to ionising radiation is still unknown. In this study, the radiomodulating effects of UPP were investigated. The effects of UPP were assessed in vitro by treating cultures of human peripheral blood with UPP and ionising radiation using two treatment regimens, the UPP pre-irradiation treatment and UPP post-irradiation treatment. The activity of UPP was investigated evaluating its effects on the radiation-induced micronuclei formation, cell proliferation, and induction of apoptosis. The redox modulating effects of UPP were examined measuring the catalase activity and the level of malondialdehyde, as a measure of oxidative stress. The results showed that UPP effects on cellular response to ionising radiation depend on its concentration and the timing of its administration. At low concentration, the UPP displayed radioprotective effects in γ-irradiated human lymphocytes while at higher concentrations, it acted as a radiosensitiser enhancing either mitotic catastrophe or apoptosis depending on the treatment regimen. The UPP modified redox processes in cells, particularly when it was employed prior to γ-irradiation. Our data highlight the importance of further research of the potential of UPP to sensitize tumour cells to radiation therapy by inhibiting pathways that lead to treatment resistance.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Junxiu Zhang ◽  
Haiyang Tang ◽  
Shiguo Chen

In the current era, electromagnetic radiation is everywhere. Every day electromagnetic radiation and static electricity caused by a variety of hazards. So, anti-electromagnetic radiation and anti-static awareness gradually enjoys popular support, more attention are gained by people on the anti-electromagnetic radiation and anti-static. This caused radiation protection and anti-static clothing industry’s rise by the day. Radiation protection and anti-static clothing will enter various households to provide a certain amount of protection to the people's health. We discuss two parts in this paper, specifically from the effects of the electromagnetic radiation and electrostatic effects which started on radiation clothing and anti-static clothing. The main contents of this paper are as follows: The first part of the definition of electromagnetic radiation and its brief introduction, while explaining the types of electromagnetic radiation and electromagnetic radiation sources in daily lives, followed by the emphasis of serious harms on electromagnetic radiation on human health It is precisely because of electromagnetic radiation on people's lives have serious threat, that makes the development of radiation protection. This follows the basic introduction of the radiation suit and the development of radiation protection clothings. The development of radiation protection suits is an established industry. Materials made of radiation protection are constantly changing, but their basic working principle has not changed. Followed by the introduction of the basic principles of radiation protection clothings, we theoretically present specific analysis and demonstration. However, the theoretical analysis and practice is often consists a certain gap, so we highlight a few actual situations on the impact of radiation protection clothings. Finally, we present a simple discussion on wide range of applications of radiation protection clothings. The thought process of second part is similar as the first part, respectively, we introduce the health hazards and the impact on people's lives of electrostatic effect and static electricity . Followed by that it is the basic principles, relevant analysis and discussion of anti-static clothing Finally, we provide the detailed explanation of the application of anti-static clothing.


2020 ◽  
Vol 33 (Supplement_1) ◽  
Author(s):  
N Donlon ◽  
A Sheppard ◽  
M Davern ◽  
C Donohoe ◽  
N Ravi ◽  
...  

Abstract   There is extensive literature demonstrating CD8+ T cells are essential for initial tumour control following radiation, however, effects are reduced after time due to T cell exhaustion and a lack of release Damage Associated Molecular Patterns (DAMPS) which are essential for anti-tumour immune responses. In vivo, activated T-cells migrate to the tumour site within the field of irradiation, however translational studies on the effects of radiotherapy on T-cell activation, function and activity are lacking. Methods EAC patient (n = 6) PBMCs were isolated by density centrifugation in Ficoll Paque. T cells were activated and were irradiated at 1.8Gy, 3.6Gy bolus dosing and fractionation for 72 hrs. A panel of immune checkpoints, DAMPS, activation markers, and cytokines were assessed by flow cytometry. To determine the effect of the TME on T cells, PBMCs were cultured under conditions of nutrient deprivation (No Glucose & No Glutamine) under conditions of normoxia and hypoxia. We then ran the aforementioned panel by flow cytometry. We also activated PBMCs with immune checkpoint blockers to determine its effects on T cell expansion and survival. Results 3.6Gy induced a significantly higher expression of DAPMS (Fig 1 p < 0.001); Calreticulin and HMGB1, most notably under conditions of nutrient deprivation (p < 0.001). Ionising radiation also resulted in an increase in the expression of cytokines and importantly in the context of targeted therapy, IR at both the conventional 1.8Gy and 3.6Gy induced a higher expression of checkpoints PD-1, PD-L1, TIGIT, and TIM-3 (p < 0.001). Interestingly, when T cells are activated in the presence of ICB (Atezolizumab, Pembrolizumab, Nivolumab), it increases the rate of T cell expansion, and enhances their survival compared to T cell activated only. (p < 0.001). Conclusion This work demonstrates the impact of clinically utilised fractions of radiation, and conditions of the TME on T cell function and activity, with improved T cell expansion and survival in the presence of ICB’s suggesting it may be a feasible combination therapy as an adjunct to radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document