scholarly journals Thermal Imaging of Receptor-Activated Heat Production in Single Cells

1998 ◽  
Vol 74 (1) ◽  
pp. 82-89 ◽  
Author(s):  
Ofer Zohar ◽  
Masayaki Ikeda ◽  
Hiroyuki Shinagawa ◽  
Hiroko Inoue ◽  
Hiroshi Nakamura ◽  
...  
The Condor ◽  
2002 ◽  
Vol 104 (4) ◽  
pp. 837-842 ◽  
Author(s):  
Oded Ovadia ◽  
Berry Pinshow ◽  
Arnon Lotem

Abstract We used infrared imaging to test whether the energetic cost of begging is observable in changes in body surface temperature (Ts) of young House Sparrow nestlings (Passer domesticus), and whether Ts is affected by nestling rank. Begging had a mixed effect on Ts, increasing it slightly at first, but decreasing it when hungry nestlings begged more vigorously. This mixed effect may result from heat production being quickly offset when begging posture and movement enhance heat loss through the skin, and suggests that the energetic cost of begging cannot be inferred from thermal imaging. The analysis of Ts in relation to nestling rank showed that although low-ranked nestlings maintained lower Ts than their larger siblings, their Ts was higher than expected for their body mass. This suggests that nestlings of a lower rank may gain heat from their larger, more developed nestmates. Imágenes Térmicas de Pichones de Passer domesticus: Efectos del Comportamiento de Solicitar y del Rango en la Nidada Resumen. Utilizamos imágenes infrarrojas de pichones jóvenes de Passer domesticus para probar si es posible observar el costo energético de solicitar en los cambios de la temperatura de la superficie del cuerpo (Ts), y si Ts está afectada por el rango del pichón en la nidada. El comportamiento de solicitar tuvo un efecto mixto sobre Ts, aumentándola levemente al principio, pero disminuyéndola cuando los polluelos hambrientos solicitaron con mayor vigorosidad. Este efecto mixto puede deberse a que la producción de calor es rápidamente contrarestada por una pérdida de calor a través de la piel dada por la postura de solicitar y el movimiento, sugiriendo que no es posible inferir el costo energético de solicitar a partir de técnicas de imagen térmica. El análisis de Ts en relación al rango de los pichones en la nidada mostró que a pesar de que los pichones de bajo rango mantuvieron Ts más bajas que sus hermanos de mayor tamaño, la Ts de los pichones más pequeños fue más alta de lo esperado de acuerdo a su tamaño corporal. Esto sugiere que los pichones de menor rango pueden ganar calor de sus compañeros de nido más desarrollados y de mayor tamaño.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Szymon Matuszewski ◽  
Anna Mądra-Bielewicz

AbstractInsects regulate their body temperature mostly behaviourally, by changing posture or microhabitat. Usually they use heat that is already present in the environment. Sometimes, however, they may manipulate the environment to affect, focus or benefit from thermogenesis. Carrion beetles create a feeding matrix by applying to cadaver surface anal or oral exudates. We tested the hypothesis that the matrix, which is formed on carrion by communally breeding beetle Necrodes littoralis L. (Silphidae), produces heat that enhances insect fitness. Using thermal imaging we demonstrate that heat produced in the matrix formed on meat by adult or larval beetles is larger than in meat decomposing without insects. Larval beetles regularly warmed up in the matrix. Moreover, by comparing matrix temperature and larval fitness in colonies with and without preparation of meat by adult beetles, we provide evidence that formation of the matrix by adult beetles has deferred thermal effects for larval microhabitat. We found an increase in heat production of the matrix and a decrease in development time and mortality of larvae after adult beetles applied their exudates on meat in the pre-larval phase. Our findings indicate that spreading of exudates over carrion by Necrodes larvae, apart from other likely functions (e.g. digesting carrion or promoting growth of beneficial microbes), facilitates thermoregulation. In case of adult beetles, this behaviour brings distinct thermal benefits for their offspring and therefore may be viewed as a new form of indirect parental care with an important thermal component.


2019 ◽  
Author(s):  
Szymon Matuszewski ◽  
Anna Mądra-Bielewicz

AbstractInsects regulate their body temperature mostly behaviourally, by changing posture or microhabitat. These strategies may be ineffective in some habitats, for example on carrion. Carrion beetles create a feeding matrix by applying to cadaver surface anal or oral exudates. We tested the hypothesis that the matrix, which is formed on carrion by communally breeding beetle Necrodes littoralis L. (Silphidae), produces heat that enhances insect fitness. Using thermal imaging we demonstrate that heat produced in the matrix formed on meat by adult or larval beetles is larger than in meat decomposing without insects. Larval beetles regularly warmed up in the matrix. Moreover, by comparing matrix temperature and larval fitness in colonies with and without preparation of meat by adult beetles, we provide evidence that formation of a matrix by adult beetles has deferred thermal effects for larval microhabitat. We found an increase in heat production of the matrix and a decrease in development time and mortality of larvae after adult beetles applied their exudates on meat in the pre-larval phase. Our findings indicate that spreading of exudates over carrion by Necrodes larvae, apart from other likely functions (e.g. digesting carrion or promoting growth of beneficial microbes), facilitates thermoregulation. In case of adult beetles, this behaviour brings distinct thermal benefits for their offspring and therefore may be viewed as a new form of indirect parental care with an important thermal component.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


Author(s):  
J. H. Luft

Ruthenium red is one of the few completely inorganic dyes used to stain tissues for light microscopy. This novelty is enhanced by ignorance regarding its staining mechanism. However, its continued usefulness in botany for demonstrating pectic substances attests to selectivity of some sort. Whether understood or not, histochemists continue to be grateful for small favors.Ruthenium red can also be used with the electron microscope. If single cells are exposed to ruthenium red solution, sufficient mass can be bound to produce observable density in the electron microscope. Generally, this effect is not useful with solid tissues because the contrast is wasted on the damaged cells at the block surface, with little dye diffusing more than 25-50 μ into the interior. Although these traces of ruthenium red which penetrate between and around cells are visible in the light microscope, they produce negligible contrast in the electron microscope. However, its presence can be amplified by a reaction with osmium tetroxide, probably catalytically, to be easily visible by EM. Now the density is clearly seen to be extracellular and closely associated with collagen fibers (Fig. 1).


Author(s):  
Leslie M. Loew

A major application of potentiometric dyes has been the multisite optical recording of electrical activity in excitable systems. After being championed by L.B. Cohen and his colleagues for the past 20 years, the impact of this technology is rapidly being felt and is spreading to an increasing number of neuroscience laboratories. A second class of experiments involves using dyes to image membrane potential distributions in single cells by digital imaging microscopy - a major focus of this lab. These studies usually do not require the temporal resolution of multisite optical recording, being primarily focussed on slow cell biological processes, and therefore can achieve much higher spatial resolution. We have developed 2 methods for quantitative imaging of membrane potential. One method uses dual wavelength imaging of membrane-staining dyes and the other uses quantitative 3D imaging of a fluorescent lipophilic cation; the dyes used in each case were synthesized for this purpose in this laboratory.


1994 ◽  
Vol 71 (01) ◽  
pp. 078-090 ◽  
Author(s):  
H L Goldsmith ◽  
M M Frojmovic ◽  
Susan Braovac ◽  
Fiona McIntosh ◽  
T Wong

SummaryThe effect of shear rate and fibrinogen concentration on adenosine diphosphate-induced aggregation of suspensions of washed human platelets in Poiseuille flow at 23°C was studied using a previously described double infusion technique and resistive particle counter size analysis (1). Using suspensions of multiple-centrifuged and -washed cells in Tyrodes-albumin [3 × 105 μl−1; (17)] with [fibrinogen] from 0 to 1.2μM, the, rate and extent of aggregation with 0.7 μM ADP in Tyrodes-albumin were measured over a range of mean transit times from 0.2 to 43 s, and at mean tube shear rates, Ḡ, = 41.9, 335 and 1,335 s−1. As measured by the decrease in singlet concentration, aggregation at 1.2 μM fibrinogen increased with increasing Ḡ up to 1,335 s1, in contrast to that previously reported in citratcd plasma, in which aggregation reached a maximum at Ḡ = 335 s−1. Without added fibrinogen, there was no aggregation at Ḡ = 41.9 s1; at Ḡ = 335 s1, there was significant aggregation but with an initial lag time, aggregation increasing further at Ḡ = 1,335 s−1. Without added fibrinogen, aggregation was abolished at all Ḡ upon incubation with the hexapeptide GRGDSP, but was almost unaffected by addition of an F(ab’)2 fragment of an antibody to human fibrinogen. Aggregation in the absence of added fibrinogen was also observed at 37°C. The activation of the multiple-washed platelets was tested using flow cytometry with the fluorescently labelled monoclonal antibodies FITC-PAC1 and FITC-9F9. It was shown that 57% of single cells in unactivated PRT expressed maximal GPIIb-IIIa fibrinogen receptors (MoAb PAC1) and 54% expressed pre-bound fibrinogen (MoAb 9F9), with further increases on ADP activation. However, incubation with GRGDSP and the F(ab’)2 fragment did not inhibit the prebound fibrinogen. Moreover, relatively unactivated cells (8% expressing receptor, 14% prebound fibrinogen), prepared from acidified cPRP by single centrifugation with 50 nM of the stable prostacyclin derivative, ZK 36 374, and resuspension in Tyrodes-albumin at 5 × 104 μl−1, aggregated with 2 and 5 μM ADP at Ḡ = 335 and 1,335 s−1 in the absence of added fibrinogen. We therefore postulate that a protein such as von Willebrand factor, secreted during platelet isolation or in flow at sufficiently high shear rates, may yield the observed shear-rate dependent aggregation without fibrinogen.


2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
S Ganesan ◽  
G Rohde ◽  
K Sroka ◽  
MKE Schaefer ◽  
C Dohm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document