Mesostructure of polymer/carbon black composites observed by conductive probe atomic force microscopy

Carbon ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 314-318 ◽  
Author(s):  
J. Ravier ◽  
F. Houzé ◽  
F. Carmona ◽  
O. Schneegans ◽  
H. Saadaoui
2017 ◽  
Vol 8 ◽  
pp. 982-988 ◽  
Author(s):  
Santa Stepina ◽  
Astrida Berzina ◽  
Gita Sakale ◽  
Maris Knite

By using a solvent-based method composites of ethylenevinyl acetate copolymer and carbon black (EVA–CB) were synthesized for sensing BTEX (benzene, toluene, ethylbenzene and xylene) vapours. The composites were characterized using atomic force microscopy (AFM) in an electroconductive mode. Gas sensing results show that EVA-CB can reproducibly detect BTEX and that the response increases linearly with vapour concentration. Compared to gas-sensing measurements of gasoline vapours, the responses with toluene and ethylbenzene are different and can be explained by varying side chains of the benzene ring.


2006 ◽  
Vol 79 (11) ◽  
pp. 509-515 ◽  
Author(s):  
Hideyuki NUKAGA ◽  
So FUJINAMI ◽  
Hiroyuki WATABE ◽  
Ken NAKAJIMA ◽  
Toshio NISHI

1995 ◽  
Vol 68 (4) ◽  
pp. 652-659 ◽  
Author(s):  
S. Maas ◽  
W. Gronski

Abstract The changes of the filler morphology of SBR vulcanizates loaded with 10 phr carbon black (N234 and N990) subjected to large strains were studied by Atomic Force Microscopy and image analysis. It was found that the filler particles tend to align in the force field. The average distance of the filler particles at the surface in the direction parallel and perpendicular to the strain direction is much smaller then according to affine deformation. The measurements give evidence of the inhomogeneous deformation of the rubber matrix and demonstrate the onset of failure at large deformation.


2014 ◽  
Vol 496-500 ◽  
pp. 106-109 ◽  
Author(s):  
Qing Shan Fu ◽  
Jian Chen ◽  
Zu Xiao Yu ◽  
Rui Song Yang

Carbon blacks are used universally as fillers in polymer matrix for mechanical, electronical and thermal properties improvement. Plenty of studies show that the structure and surface properties affect the function of carbon blacks in polymer matrix intensively. However, the reinforcing mechanism is still controversial. In this study, we studied the structure of three carbon blacks by Dibutyl phthalate (DBP) absorption and atomic force microscopy (AFM) and analyzed the absorption/desorption forces of the three carbon blacks surface by force-distance curves. The results show that the carbon black with relatively high structure possesses more branches and bigger aggregation morphologies and shows the highest surface absorption/desorption forces, which may increase the reaction between carbon black and polymer matrix.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3922
Author(s):  
Xiaobin Liang ◽  
Makiko Ito ◽  
Ken Nakajima

In this study, atomic force microscopy (AFM) nanomechanics were used to visualize the nanoscale stress distribution in carbon black (CB)-reinforced isoprene rubber (IR) vulcanizates at different elongations and quantitatively evaluate their volume fractions for the first time. The stress concentrations in the protofibrous structure (stress chains) that formed around the CB filler in CB-reinforced IR vulcanizates were directly observed at the nanoscale. The relationship between the local nanoscale stress distribution and macroscopic tensile properties was revealed based on the microscopic stress distribution and microscopic spatial structure. This study can help us gain insight into the microscopic reinforcement mechanism of carbon black-containing rubber composites.


Sign in / Sign up

Export Citation Format

Share Document