Modelling of fixed-bed reactor: two models of industrial reactor for selective hydrogenation of acetylene

1998 ◽  
Vol 53 (1) ◽  
pp. 149-155 ◽  
Author(s):  
M. Szukiewicz ◽  
K. Kaczmarski ◽  
R. Petrus
2020 ◽  
Vol 20 (9) ◽  
pp. 5800-5803 ◽  
Author(s):  
Gyeongmin Lee ◽  
Woon-Jo Jeong ◽  
Ho-Geun Ahn

Ethylene, the main raw material for polyethylene production, is a by-product produced by thermally decomposing naphtha and it contains a small amount of acetylene. The acetylene reacts as a permanent catalyst poison for the ethylene polymerization catalyst. In this study, we wanted to improve the acetylene conversion and the ethylene selectivity by selective hydrogenation of acetylene for removing acetylene contained in ethylene. Catalyst was prepared by loading nanosized gold (Au) and palladium (Pd) particles on support (Al2O3, TiO2). Deposition order Au and Pd particles was changed. The activity of the catalyst was investigated using a flow-typed fixed bed reactor under atmospheric pressure. Au and Pd particles deposited on TiO2 were oxidized to Au2O3 and PdO due to strong metal support interaction (SMSI). It was considered that the Au/Pd/Al2O3 catalyst was more active than the Pd/Au/Al2O3 catalyst due to the formation of the interface between Au particles and Pd particles (or support). But Pd/Au/Al2O3 catalyst is considered to have poor activity because Pd particles cover part of the interface between Au and the support. Au/Pd/Al2O3 catalyst showed the best catalytic activity, and acetylene conversion and ethylene selectivity were 100% and about 80% at 40 °C, respectively.


2018 ◽  
Vol 8 (23) ◽  
pp. 6091-6099 ◽  
Author(s):  
Danxin Hu ◽  
Hualei Hu ◽  
Hao Zhou ◽  
Guozheng Li ◽  
Chunlin Chen ◽  
...  

The highly efficient selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved in a fixed-bed reactor by using inexpensive potassium-doped Cu/Al2O3 catalysts.


2018 ◽  
Vol 8 (10) ◽  
pp. 2624-2635 ◽  
Author(s):  
Jingxia Tian ◽  
Wei Chen ◽  
Peng Wu ◽  
Zhirong Zhu ◽  
Xiaohong Li

A Cux–Mgy–Zrz/SiO2 catalyst with a total metal loading of 60 wt% prepared by a deposition–precipitation method was applied for the selective hydrogenation of ethylene carbonate to methanol and ethylene glycol in a fixed-bed reactor.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


Sign in / Sign up

Export Citation Format

Share Document