Experimental investigations of size distribution through large van der Waals cluster beam cross-section

2003 ◽  
Vol 377 (5-6) ◽  
pp. 595-600 ◽  
Author(s):  
Shenghong Yang ◽  
D.V. Daineka ◽  
M. Châtelet
Author(s):  
Eric Mockensturm ◽  
Arash Mahdavi

Experimental investigations of carbon nanotubes have revealed that they can collapse into nanoribbons that have a dumb-bell shape cross-section. Due to the extreme exibility of single-atom thick graphene sheets, if the tube is large enough self-induced Van der Waals forces acting on the at surfaces of the ribbon will be large enough to hold the nanotube in the collapsed (ribbon) configuration. Energetically, the additional strain (bending) energy stored in the collapsed state is offset by the decrease in energy of the Van der Waals interactions. Because Van der Waals forces are short ranged, one nds that tubes of great enough diameter are bistable. Here we investigate the natural of this bistability by investigating how the energy stored in the tube changes as it is compressed by at rigid indenters of various widths. The nanotube is assumed to deform uniformly along its length and the cross-section is modeled using inextensible, non-linear beam theory (Euler’s Elastica). We nd that the in ated (tube) conguration is always stable but that the energy barrier against decreases with increasing tube radius. Additionally, the energy difference between the in ated and collapsed states decreases nearly linear with increasing radius and for tubes with radius greater than 26 A the collapsed state is energetically favored.


2017 ◽  
Vol 28 (5) ◽  
pp. 2529-2547 ◽  
Author(s):  
N. G. Korobeishchikov ◽  
M. A. Roenko ◽  
G. I. Tarantsev

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 342
Author(s):  
Holger Lieberwirth ◽  
Lisa Kühnel

Confined bed comminution in high-pressure grinding rollers (HPGRs) and vertical roller mills (VRMs) was previously used preferably for grinding comparably homogeneous materials such as coal or clinker. Meanwhile, it started to complement or even replace tumbling mills in ore beneficiation with ore and gangue particles of rather different breakage behaviors. The selectivity in the comminution of a mixture of particles with different strengths but similar particle size distribution (PSD) of the constituents in a particle bed was investigated earlier. The strength of a material is, however, also a function of particle size. Finer particles tend to be more competent than coarser ones of the same material. In industrial ore processing using confined bed comminution, this effect cannot be neglected but even be exploited to increase efficiency. This paper presents research results on this topic based on experimental investigations with model materials and with natural particles, which were stressed in a piston–die press. It appeared that the comminution result substantially depends on the material characteristics, the composition of the mixture and the PSD of the constituents. Conclusions will be drawn for the future applications of selective comminution in mineral processing.


2014 ◽  
Vol 617 ◽  
pp. 221-224 ◽  
Author(s):  
Alena Čavojcová ◽  
Martin Moravcik

Fatigue and fatigue damage leads to a change in material properties that can lead to the element failures. Generally, it is necessary to verify the influence of the fatigue effects on the concrete members according to European standard EC2, [1]. FRP materials have been possibly used for the fatigue damage structure rehabilitation. There we can apply the condition of the limit boundaries stress on concrete and limit force in FRP material theoretical approach. Fatigue assessment will be analyzed for T-beam cross section with reinforcement and strengthened FPR material in this paper.


Author(s):  
S. V. Banushkina ◽  
◽  
A. I. Turkin ◽  
A. I. Chepurov ◽  
◽  
...  

Clinopyroxenes (Cpx) are one of the main rock-forming minerals, but stoichiometry of their compositions was called into question. In particular, an idea of hypothetical calcium molecule Eskola (CaEs, Ca0,5AlSi2O6) existence was expressed. This minal has structure vacancy and silica excess. Numerous experimental investigations in CMAS-system (CaO-MgO-Al2O3-SiO2) have showed that the question of non-stoichiometric Cpx existence remains open. This paper presents the results of an experimental study of the diopside Di (CaMgSi2O6) – calcium molecule Eskola CaEs (Ca0,5AlSi2O6) cross-section in the CMAS-system. The experiments were carried out in the following pressure and temperature range: P=10-4 – 3,0 GPa; T=966 – 15250C. Experiments at atmospheric pressure (10-4 GPa) were performed on a vertical shaft electric resistance furnace; high-pressure ones were performed on a "piston-cylinder" type apparatus. Samples obtained were analyzed using electron microprobe (EMP), scanning electron microscope (SEM) and Raman spectrometer. Depending on the P-T conditions, the samples contain the following phases: anorthite An, garnet Grt, diopside Di, clinopyroxene Cpx, quartz Qtz (tridymite Tr – for experiments at atmospheric pressure), and glass L. The data array on the composition of clinopyroxenes crystallized in this cross-section with diopside in various associations is generalized and supplemented. Clinopyroxenes were found to form quaternary solid solutions of diopside Di (CaMgSi2O6) – enstatite En (Mg2Si2O6) – calcium molecule Tschermak CaTs (CaAl2SiO6) – calcium molecule Eskola CaEs (Ca0,5AlSi2O6). The CaTs and CaEs minals contents are positively correlated with the amount of aluminum in clinopyroxene, and this relationship is particularly pronounced for CaTs. It is confirmed that clinopyroxenes in this cross-section can contain an excess of silica at both atmospheric and high pressures. Apparently, the cation vacancy that exists in pyroxene structure can participate in ordering processes. As a result the pyroxenes of another structure (not diopside – C2/c-symmetry) can be crystallized from total compositions in the Di-CaEs cross-section. Additional research is needed to support this hypothesis. Besides, at present investigation it was not possible to establish an unambiguous relationship between the Cpx composition and P-T-parameters, since it is also associated with both the mixture initial composition and the mineral association. Further experiments are required to justify any geothermobarometric dependence.


2021 ◽  
Vol 5 (4) ◽  
pp. 53-60
Author(s):  
Daniel Gurgul ◽  
Andriy Burbelko ◽  
Tomasz Wiktor

This paper presents a new proposition on how to derive mathematical formulas that describe an unknown Probability Density Function (PDF3) of the spherical radii (r3) of particles randomly placed in non-transparent materials. We have presented two attempts here, both of which are based on data collected from a random planar cross-section passed through space containing three-dimensional nodules. The first attempt uses a Probability Density Function (PDF2) the form of which is experimentally obtained on the basis of a set containing two-dimensional radii (r2). These radii are produced by an intersection of the space by a random plane. In turn, the second solution also uses an experimentally obtained Probability Density Function (PDF1). But the form of PDF1 has been created on the basis of a set containing chord lengths collected from a cross-section.The most important finding presented in this paper is the conclusion that if the PDF1 has proportional scopes, the PDF3 must have a constant value in these scopes. This fact allows stating that there are no nodules in the sample space that have particular radii belonging to the proportional ranges the PDF1.


2002 ◽  
Vol 351 (1-2) ◽  
pp. 121-127 ◽  
Author(s):  
Susanne Ullrich ◽  
György Tarczay ◽  
Xin Tong ◽  
Mark S Ford ◽  
Caroline E.H Dessent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document