Computational studies on generation and control in magnetron sputtering plasma

1999 ◽  
Vol 121-122 ◽  
pp. 665
Author(s):  
S. Ido ◽  
M. Kashiwagi ◽  
M. Takahashi ◽  
T. Yoshida
1999 ◽  
Vol 38 (Part 1, No. 7B) ◽  
pp. 4450-4454 ◽  
Author(s):  
Shunji Ido ◽  
Mieko Kashiwagi ◽  
Mikihiko Takahashi

Synthesis ◽  
2021 ◽  
Author(s):  
Zheng-Yang Gu ◽  
Yang Wu ◽  
Feng Jin ◽  
Bao Xiaoguang ◽  
Ji-Bao Xia

An atom- and step-economic intermolecular multi-component palladium-catalyzed C–H amidation of alkenes with carbon monoxide and organic azides has been developed for the synthesis of alkenyl amides. The reaction proceeds efficiently without an ortho-directing group on the alkene substrates. Nontoxic dinitrogen is generated as the sole by-product. Computational studies and control experiments have revealed that the reaction takes place via an unexpected mechanism by tandem palladium catalysis.


2014 ◽  
Vol 32 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Krzysztof Zdunek ◽  
Katarzyna Nowakowska-Langier ◽  
Rafal Chodun ◽  
Jerzy Dora ◽  
Sebastian Okrasa ◽  
...  

AbstractIn 2011, we proposed a novel magnetron sputtering method. It involved the use of pulsed injection of working gas for the initiation and control of gas discharge during reactive sputtering of an AlN layer (Gas Injection Magnetron Sputtering — GIMS). Unfortunately, the presence of Al-Al bonds was found in XPS spectra of the AlN layers deposited by GIMS onto Si substrate. Our studies reported in this paper proved that the synchronization of time duration of the pulses of both gas injection and applied voltage, resulted in the elimination of Al-Al bonds in the AlN layer material, which was confirmed by the XPS studies. In our opinion the most probable reason of Al-Al bonds in the AlN layers deposited by the GIMS was the self-sputtering of the Al target in the final stage of the pulsed discharge.


2021 ◽  
Author(s):  
Zi-Qi Li ◽  
Yilin Cao ◽  
Taeho Kang ◽  
Keary Engle

A multi-component approach to structurally complex organosulfur products is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and tailored organosulfur electrophiles. Key to the development of this transformation is the identification of a modular N-alkyl-N-(arylsulfenyl)arenesulfonamide family of sulfur electrophiles. Tuning the electronic and steric properties of the leaving group in these reagents controls pathway selectivity, favoring three-component coupling and suppressing side reactions, as examined via computational studies. The unique syn-stereoselectivity differs from traditional electrophilic sulfenyl transfer processes involving a thiiranium ion intermediate and arises from the directed arylnickel(I) migratory insertion mechanism, as elucidated through reaction kinetics and control experiments. Reactivity and regioselectivity are facilitated by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, alcohols, amines, amides, and azaheterocycles.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Sign in / Sign up

Export Citation Format

Share Document