Computational Studies on the Erosion Process in a Magnetron Sputtering System with a Ferromagnetic Target

1998 ◽  
Vol 37 (Part 1, No. 3A) ◽  
pp. 965-969 ◽  
Author(s):  
Shunji Ido ◽  
Takeshi Suzuki ◽  
Mieko Kashiwagi
1999 ◽  
Vol 38 (Part 1, No. 7B) ◽  
pp. 4450-4454 ◽  
Author(s):  
Shunji Ido ◽  
Mieko Kashiwagi ◽  
Mikihiko Takahashi

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 599
Author(s):  
Handan Huang ◽  
Li Jiang ◽  
Yiyun Yao ◽  
Zhong Zhang ◽  
Zhanshan Wang ◽  
...  

The laterally graded multilayer collimator is a vital part of a high-precision diffractometer. It is applied as condensing reflectors to convert divergent X-rays from laboratory X-ray sources into a parallel beam. The thickness of the multilayer film varies with the angle of incidence to guarantee every position on the mirror satisfies the Bragg reflection. In principle, the accuracy of the parameters of the sputtering conditions is essential for achieving a reliable result. In this paper, we proposed a precise method for the fabrication of the laterally graded multilayer based on a planetary motion magnetron sputtering system for film thickness control. This method uses the fast and slow particle model to obtain the particle transport process, and then combines it with the planetary motion magnetron sputtering system to establish the film thickness distribution model. Moreover, the parameters of the sputtering conditions in the model are derived from experimental inversion to improve accuracy. The revolution and rotation of the substrate holder during the final deposition process are achieved by the speed curve calculated according to the model. Measurement results from the X-ray reflection test (XRR) show that the thickness error of the laterally graded multilayer film, coated on a parabolic cylinder Si substrate, is less than 1%, demonstrating the effectiveness of the optimized method for obtaining accurate film thickness distribution.


2005 ◽  
Vol 200 (1-4) ◽  
pp. 1026-1030 ◽  
Author(s):  
H.Y. Lee ◽  
W.S. Jung ◽  
J.G. Han ◽  
S.M. Seo ◽  
J.H. Kim ◽  
...  

2010 ◽  
Vol 10 (3) ◽  
pp. S463-S467 ◽  
Author(s):  
Kyu Ung Sim ◽  
Seung Wook Shin ◽  
A.V. Moholkar ◽  
Jae Ho Yun ◽  
Jong Ha Moon ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


Sign in / Sign up

Export Citation Format

Share Document