scholarly journals Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid

FEBS Letters ◽  
1997 ◽  
Vol 412 (1) ◽  
pp. 61-64 ◽  
Author(s):  
Shigeru Tamogami ◽  
Randeep Rakwal ◽  
Osamu Kodama
1997 ◽  
Vol 11 (1-2) ◽  
pp. 37-39
Author(s):  
N. Gorinova ◽  
R. Batchvarova ◽  
M. Zdravkova ◽  
N. Yordanov

Author(s):  
Zhongzhou Yang ◽  
Yifan Xiao ◽  
Tongtong Jiao ◽  
Yang Zhang ◽  
Jing Chen ◽  
...  

Rice (Oryza sativa L.), a major staple food for billions of people, was assessed for its phytotoxicity of copper oxide nanoparticle (CuO NPs, size < 50 nm). Under hydroponic condition, seven days of exposure to 62.5, 125, and 250 mg/L CuO NPs significantly suppressed the growth rate of rice seedlings compared to both the control and the treatment of supernatant from 250 mg/L CuO NP suspensions. In addition, physiological indexes associated with antioxidants, including membrane damage and antioxidant enzyme activity, were also detected. Treatment with 250 mg/L CuO NPs significantly increased malondialdehyde (MDA) content and electrical conductivity of rice shoots by 83.4% and 67.0%, respectively. The activity of both catalase and superoxide dismutase decreased in rice leaves treated with CuO NPs at the concentration of 250 mg/L, while the activity of the superoxide dismutase significantly increased by 1.66 times in rice roots exposed to 125 mg/L CuO NPs. The chlorophyll, including chlorophyll a and chlorophyll b, and carotenoid content in rice leaves decreased with CuO NP exposure. Finally, to explain potential molecular mechanisms of chlorophyll variations, the expression of four related genes, namely, Magnesium chelatase D subunit, Chlorophyll synthase, Magnesium-protoporphyrin IX methyltransferase, and Chlorophyllide a oxygenase, were quantified by qRT-PCR. Overall, CuO NPs, especially at 250 mg/L concentration, could affect the growth and development of rice seedlings, probably through oxidative damage and disturbance of chlorophyll and carotenoid synthesis.


2020 ◽  
Author(s):  
Qiyu Luo ◽  
Shu Chen ◽  
Jiazheng Zhu ◽  
Laihua Ye ◽  
Nathan D. Hall ◽  
...  

Paraquat is an important bipyridine herbicide by acting on the photosynthetic system of the plants and generating reactive oxygen species leading to cell death, whereas the mechanism of the paraquat resistance remains to be explored. In this study, a putative paraquat-resistant gene EiKCS from goosegrass (Eleusine indica L.) was isolated and overexpressed in a transgenic rice (Oryza sativa L.). This transgenic rice (KCSox) was treated by exogenous spermidine and paraquat and then was analyzed by qualitative and quantitative proteomics. Overexpressing of EiKCS enhanced paraquat tolerance in KCSox by the accumulation of endogenous polyamines whose dominant presences of polyamines benzoylation derivatizations in rice were C18H20N2O2, C28H31N3O3, and C38H42N4O4. The mechanism underlying the improving tolerance enhanced antioxidant capacity of ROS systems and light-harvesting in photosynthesis in KCSox rice leaves to reducing paraquat toxicity. The protein β-Ketoacyl-CoA Synthase (EiKCS) encoded by the EiKCS gene promoted the synthesis and metabolism of proteins of the polyamine pathway. Three cofactors CERs were identified and positively correlated with the function of EiKCS on very-long-chain fatty acids (VLCFAs) biosynthesis via promoting the polyamine pathway and inhibiting the links with the TCA pathway and fatty acid pathway to responding to the paraquat tolerance in the KCSox rice, which also caused the prolongation of the overproduction of spermine and a transient increase of intracellular malondialdehyde (MDA). These results expanded the polyamines pathway manipulated in cereals using genetic engineering to clarify the mechanism of paraquat-tolerance.


2019 ◽  
Vol 70 (10) ◽  
pp. 849
Author(s):  
Qilei Zhang ◽  
Minling Cai ◽  
Lina Lu ◽  
Hui Gao ◽  
Changlian Peng

Ascorbic acid (Asc) is one of the major antioxidants in plants. l-Galactono-1,4-lactone dehydrogenase (GLDH) is an enzyme that catalyses the last step of Asc biosynthesis in higher plants. In this study the effects of endogenous Asc on the distribution of photosynthetic electron flow were investigated in wild-type (ZH-11) rice (Oryza sativa L.) and in GLDH-overexpressing (GO-2) and GLDH-suppressed (GI-2) transgenic rice. The ratio of photosynthetic electron flow distributed to Rubisco-dependent carboxylation was highest in GO-2, whereas other electron flows in addition to carbon fixation were highest in GI-2 after flowering. Further examination showed that the photosynthetic electron flow, GLDH content and reactive oxygen species-scavenging ability were highest in GO-2 and lowest in GI-2. Therefore, the senescence of leaves was faster in GI-2 but slower in GO-2 compared with ZH-11. In addition, leaves with higher Asc content had more Rubisco content and a superior photosynthetic rate, which increased rice yield. These results suggest that increasing the endogenous Asc content of rice delays senescence, maintains a higher photosynthetic rate and results in more photosynthetic electron flow distributed to Rubisco-dependent carboxylation, ultimately leading to increased rice yield.


Sign in / Sign up

Export Citation Format

Share Document