Indomethacin treatment is associated with differential expression of β-catenin/TCF target genes in human sporadic colorectal cancer cells

2001 ◽  
Vol 120 (5) ◽  
pp. A661-A661
Author(s):  
G HAWCROFT ◽  
M DAMICO ◽  
C ALBANESE ◽  
R PESTELL ◽  
M HULL
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Dario Zimmerli ◽  
Costanza Borrelli ◽  
Amaia Jauregi-Miguel ◽  
Simon Söderholm ◽  
Salome Brütsch ◽  
...  

BCL9 and PYGO are β-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of β-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the β-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a β-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/β-catenin-dependent transcriptional complex.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Li ◽  
Rubing Mo ◽  
Linmei Zheng

Abstract Objective Colorectal cancer is one of the most common malignancy in the world. The oncogenesis of colorectal cancer is still not fully elucidated. It was reported that microRNA-490-3p (miR-490-3p) was closely related to the regulation of cancers. However, if miR-490-3p could also affect colorectal cancer and the specific mechanism remains unclear. Methods qRT-PCR was conducted to examine the expression of miR-490-3p. DIANA, miRDB, and TargetScan databases were used to identify target genes. LOVO and SW480 cells were transfected by miR-490-3p mimics and inhibitors. Transwell assay was used to measure cell invasion and migration. Cisplatin and fluorouracil were administered to investigate chemotherapy resistance. Western blot was used to measure TNKS2 protein expression. Binding sites were verified using the double luciferase assay. Results miR-490-3p expression was low in the colorectal cancer cells. The level of miR-490-3p was negatively correlated with cell migration and invasion of cancer cells. miR-490-3p could bind to TNKS2 mRNA 3′UTR directly. miR-490-3p can suppress cell viability and resistance to chemotherapy in colorectal cancer cells through targeting TNKS2. Conclusions miR-490-3p could affect colorectal cancer by targeting TNKS2. This study may provide a potential therapeutic target for colorectal cancer.


2000 ◽  
Vol 118 (4) ◽  
pp. A56
Author(s):  
Katherine M. Sheehan ◽  
Desmond J. Fitzgerald ◽  
Frank E. Murray

2001 ◽  
Vol 276 (32) ◽  
pp. 29681-29687 ◽  
Author(s):  
Rajnish A. Gupta ◽  
Jeffrey A. Brockman ◽  
Pasha Sarraf ◽  
Timothy M. Willson ◽  
Raymond N. DuBois

2021 ◽  
Vol 22 (15) ◽  
pp. 8337
Author(s):  
Bohan Chen ◽  
Yiping Ma ◽  
Jinfang Bi ◽  
Wenbin Wang ◽  
Anshun He ◽  
...  

Enhancers regulate multiple genes via higher-order chromatin structures, and they further affect cancer progression. Epigenetic changes in cancer cells activate several cancer-specific enhancers that are silenced in normal cells. These cancer-specific enhancers are potential therapeutic targets of cancer. However, the functions and regulation networks of colorectal-cancer-specific enhancers are still unknown. In this study, we profile colorectal-cancer-specific enhancers and reveal their regulation network through the analysis of HiChIP data that were derived from a colorectal cancer cell line and Hi-C and RNA-seq data that were derived from tissue samples by in silico analysis and in vitro experiments. Enhancer–promoter loops in colorectal cancer cells containing colorectal-cancer-specific enhancers are involved in more than 50% of the topological associated domains (TADs) changed in colorectal cancer cells compared to normal colon cells. In addition, colorectal-cancer-specific enhancers interact with 152 genes that are significantly and highly expressed in colorectal cancer cells. These colorectal-cancer-specific enhancer target genes include ITGB4, RECQL4, MSLN, and GDF15. We propose that the regulation network of colorectal-cancer-specific enhancers plays an important role in the progression of colorectal cancer.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0181034 ◽  
Author(s):  
Tsui-Chin Huang ◽  
Pin-Tse Lee ◽  
Ming-Heng Wu ◽  
Chi-Chen Huang ◽  
Chiung-Yuan Ko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document