Su2100 Differences in Resting State Functional Connectivity of Interoceptive and Default Mode Networks in Nerd and Healthy Controls

2013 ◽  
Vol 144 (5) ◽  
pp. S-557
Author(s):  
Mark Kern ◽  
Arash Babaei ◽  
Erica A. Samuel ◽  
Megan DeMara-Hoth ◽  
Reza Shaker
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Cui ◽  
Yun Wang ◽  
Rui Liu ◽  
Xiongying Chen ◽  
Zhifang Zhang ◽  
...  

AbstractAntidepressants are often the first-line medications prescribed for patients with major depressive disorder (MDD). Given the critical role of the default mode network (DMN) in the physiopathology of MDD, the current study aimed to investigate the effects of antidepressants on the resting-state functional connectivity (rsFC) within and between the DMN subsystems. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data from 36 unmedicated MDD patients at baseline and after escitalopram treatment for 12 weeks. The rs-fMRI data were also collected from 61 matched healthy controls at the time point with the same interval. Then, we decomposed the DMN into three subsystems based on a template from previous studies and computed the rsFC within and between the three subsystems. Finally, repeated measures analysis of covariance was conducted to identify the main effect of group and time and their interaction effect. We found that the significantly reduced within-subsystem rsFC in the DMN core subsystem in patients with MDD at baseline was increased after escitalopram treatment and became comparable with that in the healthy controls, whereas the reduced within-subsystem rsFC persisted in the DMN dorsal medial prefrontal cortex (dMPFC) and medial temporal subsystems in patients with MDD following escitalopram treatment. In addition, the reduced between-subsystem rsFC between the core and dMPFC subsystem showed a similar trend of change after treatment in patients with MDD. Moreover, our main results were confirmed using the DMN regions from another brain atlas. In the current study, we found different effects of escitalopram on the rsFC of the DMN subsystems. These findings deepened our understanding of the neuronal basis of antidepressants’ effect on brain function in patients with MDD. The trial name: appropriate technology study of MDD diagnosis and treatment based on objective indicators and measurement. URL: http://www.chictr.org.cn/showproj.aspx?proj=21377. Registration number: ChiCTR-OOC-17012566.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tiffany Bell ◽  
Akashroop Khaira ◽  
Mehak Stokoe ◽  
Megan Webb ◽  
Melanie Noel ◽  
...  

Abstract Background Migraine affects roughly 10% of youth aged 5–15 years, however the underlying mechanisms of migraine in youth are poorly understood. Multiple structural and functional alterations have been shown in the brains of adult migraine sufferers. This study aims to investigate the effects of migraine on resting-state functional connectivity during the period of transition from childhood to adolescence, a critical period of brain development and the time when rates of pediatric chronic pain spikes. Methods Using independent component analysis, we compared resting state network spatial maps and power spectra between youth with migraine aged 7–15 and age-matched controls. Statistical comparisons were conducted using a MANCOVA analysis. Results We show (1) group by age interaction effects on connectivity in the visual and salience networks, group by sex interaction effects on connectivity in the default mode network and group by pubertal status interaction effects on connectivity in visual and frontal parietal networks, and (2) relationships between connectivity in the visual networks and the migraine cycle, and age by cycle interaction effects on connectivity in the visual, default mode and sensorimotor networks. Conclusions We demonstrate that brain alterations begin early in youth with migraine and are modulated by development. This highlights the need for further study into the neural mechanisms of migraine in youth specifically, to aid in the development of more effective treatments.


2020 ◽  
Author(s):  
Steve Mehrkanoon

AbstractSynchronous oscillations of neuronal populations support resting-state cortical activity. Recent studies indicate that resting-state functional connectivity is not static, but exhibits complex dynamics. The mechanisms underlying the complex dynamics of cortical activity have not been well characterised. Here, we directly apply singular value decomposition (SVD) in source-reconstructed electroencephalography (EEG) in order to characterise the dynamics of spatiotemporal patterns of resting-state functional connectivity. We found that changes in resting-state functional connectivity were associated with distinct complex topological features, “Rich-Club organisation”, of the default mode network, salience network, and motor network. Rich-club topology of the salience network revealed greater functional connectivity between ventrolateral prefrontal cortex and anterior insula, whereas Rich-club topologies of the default mode networks revealed bilateral functional connectivity between fronto-parietal and posterior cortices. Spectral analysis of the dynamics underlying Rich-club organisations of these source-space network patterns revealed that resting-state cortical activity exhibit distinct dynamical regimes whose intrinsic expressions contain fast oscillations in the alpha-beta band and with the envelope-signal in the timescale of < 0.1 Hz. Our findings thus demonstrated that multivariate eigen-decomposition of source-reconstructed EEG is a reliable computational technique to explore how dynamics of spatiotemporal features of the resting-state cortical activity occur that oscillate at distinct frequencies.


2021 ◽  
Author(s):  
Kaley Davis ◽  
Emily Hirsch ◽  
Dylan Gee ◽  
Margaret Andover ◽  
Amy Krain Roy

Abstract Humans are reliant on their caregivers for an extended period of time, offering numerous opportunities for environmental factors, such as parental attitudes and behaviors, to impact brain development. The default mode network is a neural system encompassing the medial prefrontal cortex, posterior cingulate cortex, precuneus, and temporo-parietal junction, which is implicated in aspects of cognition and psychopathology. Delayed default mode network maturation in children and adolescents has been associated with greater general dimensional psychopathology, and positive parenting behaviors have been suggested to serve as protective mechanisms against atypical default mode network development. The current study aimed to extend the existing research by examining whether within- default mode network resting-state functional connectivity would mediate the relation between parental acceptance/warmth and youth psychopathology. Data from the Adolescent Brain and Cognitive Development study, which included a community sample of 9,058 children ages 9-10.9 years, were analyzed to test this prediction. Results from the analysis demonstrated a significant mediation, where greater parental acceptance/warmth predicted greater within- default mode network resting-state functional connectivity, which in turn predicted lower psychopathology. Our study provides preliminary support for the notion that positive parenting traits may reduce the risk for psychopathology in youth through their influence on the default mode network. Due to the cross-sectional nature of this study, we can only draw correlational inference; therefore, these relationships should be tested longitudinally in future investigations.


2020 ◽  
Vol 14 ◽  
Author(s):  
Diego Szczupak ◽  
Cecil C. Yen ◽  
Cirong Liu ◽  
Xiaoguang Tian ◽  
Roberto Lent ◽  
...  

The corpus callosum, the principal structural avenue for interhemispheric neuronal communication, controls the brain’s lateralization. Developmental malformations of the corpus callosum (CCD) can lead to learning and intellectual disabilities. Currently, there is no clear explanation for these symptoms. Here, we used resting-state functional MRI (rsfMRI) to evaluate the dynamic resting-state functional connectivity (rsFC) in both the cingulate cortex (CG) and the sensory areas (S1, S2, A1) in three marmosets (Callithrix jacchus) with spontaneous CCD. We also performed rsfMRI in 10 CCD human subjects (six hypoplasic and four agenesic). We observed no differences in the strength of rsFC between homotopic CG and sensory areas in both species when comparing them to healthy controls. However, in CCD marmosets, we found lower strength of quasi-periodic patterns (QPP) correlation in the posterior interhemispheric sensory areas. We also found a significant lag of interhemispheric communication in the medial CG, suggesting asynchrony between the two hemispheres. Correspondingly, in human subjects, we found that the CG of acallosal subjects had a higher QPP correlation than controls. In comparison, hypoplasic subjects had a lower QPP correlation and a delay of 1.6 s in the sensory regions. These results show that CCD affects the interhemispheric synchrony of both CG and sensory areas and that, in both species, its impact on cortical communication varies along the CC development gradient. Our study shines a light on how CCD misconnects homotopic regions and opens a line of research to explain the causes of the symptoms exhibited by CCD patients and how to mitigate them.


Sign in / Sign up

Export Citation Format

Share Document