Intracellular calcium transport and its regulation: Calcium binding proteins

1983 ◽  
Vol 79 ◽  
pp. 77-78
Author(s):  
Ernesto Carafoli
2012 ◽  
Vol 24 (1) ◽  
pp. 185
Author(s):  
I. H. Hwang ◽  
E. B. Jeung

The placenta has many essential roles in the maintenance of pregnancy and homeostasis. Calcium transport and regulation are also controlled by the placenta. In general, calcium transport is divided into an active transcellular pathway and a passive paracellular pathway. Transient receptor potential cation channel subfamily V member 5/6 (TRPV5/6), calbindin-D9k/-28k (CaBP-9k/-28k) and Na+/Ca2+ exchanger (NCX1) are involved in the transcellular pathway. The paracellular pathway is determined by the expression of tight junction genes, such as occludin, claudins and ZO-1. In this study, we analysed the difference in calcium transport in the placentae of CaBP-9k and CaBP-28k knockout (KO) mice compared with that of wild-type (WT) mice. Placentae were collected and used for mRNA and protein evaluation from 9 mice of each type (a total of 36 mice). All mice were killed on gestational Day 19. We confirmed mRNA expression by RT-qPCR and protein expression by Western blot analysis. The data were statistically analysed by one-way ANOVA using Tukey's test. In the transcellular pathway, the expression levels of NCX1 and TPRV6 were shown to be significantly increased in KO mice compared with WT mice. In the paracellular pathway, occluding, which is directly related to permeability, mRNA and protein expression was significantly increased in single KO mice compared with WT, but not in double KO mice. Claudin-4, which is a cation barrier, mRNA and protein expression patterns were significantly decreased in single KO mice compared with WT, but not in double KO mice. These results imply that the disability of calcium buffering due to CaBP-9k or CaBP-28k KO may lead to an accelerated transcellular pathway. In addition, a single KO of calcium-binding proteins may lead to decreased paracellular permeability to weaken the leakage of calcium through the tight junction and may also lead to increased cation selectivity of tight junctions. Taken together, these results might indicate that KO of calcium-binding proteins may induce activation of a compensating transcellular pathway in the placenta of mice and a paracellular pathway may support the maintenance of calcium homeostasis.


2019 ◽  
Vol 20 (9) ◽  
pp. 2146 ◽  
Author(s):  
Richard Fairless ◽  
Sarah K. Williams ◽  
Ricarda Diem

Neuronal subpopulations display differential vulnerabilities to disease, but the factors that determine their susceptibility are poorly understood. Toxic increases in intracellular calcium are a key factor in several neurodegenerative processes, with calcium-binding proteins providing an important first line of defense through their ability to buffer incoming calcium, allowing the neuron to quickly achieve homeostasis. Since neurons expressing different calcium-binding proteins have been reported to be differentially susceptible to degeneration, it can be hypothesized that rather than just serving as markers of different neuronal subpopulations, they might actually be a key determinant of survival. In this review, we will summarize some of the evidence that expression of the EF-hand calcium-binding proteins, calbindin, calretinin and parvalbumin, may influence the susceptibility of distinct neuronal subpopulations to disease processes.


1990 ◽  
Vol 259 (2) ◽  
pp. F195-F209 ◽  
Author(s):  
M. Gross ◽  
R. Kumar

The vitamin D-dependent calcium binding proteins (calbindins) are members of the troponin-C superfamily of proteins that occur in a number of calcium-transporting tissues such as the intestine, the distal tubule of the kidney, and the placenta. They are also present in other tissues such as the brain, peripheral nervous system, pancreas, parathyroid gland, and bone. In some tissues, such as the adult brain, the proteins occur in the absence of the vitamin. The proteins bind calcium in "EF" hand structures and are "calcium-sensitive" in that they undergo a conformational change on binding calcium. They appear to enhance transcellular calcium transport and are frequently present in tissues that contain the plasma membrane calcium pump.


Sign in / Sign up

Export Citation Format

Share Document