scholarly journals Role of motif YDPP with the intracellular carboxyl tail in angiotensin II-binding of human AT1 receptor

2000 ◽  
Vol 82 ◽  
pp. 137
Author(s):  
Yoichi Inada ◽  
Tokio Nakane ◽  
Shigetoshi Chiba
2020 ◽  
Vol 21 (9) ◽  
pp. 892-901 ◽  
Author(s):  
Ana Luiza Ataide Carneiro de Paula Gonzaga ◽  
Vitória Andrade Palmeira ◽  
Thomas Felipe Silva Ribeiro ◽  
Larissa Braga Costa ◽  
Karla Emília de Sá Rodrigues ◽  
...  

Background: Pediatric tumors remain the highest cause of death in developed countries. Research on novel therapeutic strategies with lesser side effects is of utmost importance. In this scenario, the role of Renin-Angiotensin System (RAS) axes, the classical one formed by angiotensinconverting enzyme (ACE), Angiotensin II and AT1 receptor and the alternative axis composed by ACE2, Angiotensin-(1-7) and Mas receptor, have been investigated in cancer. Objective: This review aimed to summarize the pathophysiological role of RAS in cancer, evidence for anti-tumor effects of ACE2/Angiotensin-(1-7)/Mas receptor axis and future therapeutic perspectives for pediatric cancer. Methods: Pubmed, Scopus and Scielo were searched in regard to RAS molecules in human cancer and pediatric patients. The search terms were “RAS”, “ACE”, “Angiotensin-(1-7)”, “ACE2”, “Angiotensin II”, “AT1 receptor”, “Mas receptor”, “Pediatric”, “Cancer”. Results: Experimental studies have shown that Angiotensin-(1-7) inhibits the growth of tumor cells and reduces local inflammation and angiogenesis in several types of cancer. Clinical trials with Angiotensin-( 1-7) or TXA127, a pharmaceutical grade formulation of the naturally occurring peptide, have reported promising findings, but not enough to recommend medical use in human cancer. In regard to pediatric cancer, only three articles that marginally investigated RAS components were found and none of them evaluated molecules of the alternative RAS axis. Conclusion: Despite the potential applicability of Angiotensin-(1-7) in pediatric tumors, the role of this molecule was never tested. Further clinical trials are necessary, also including pediatric patients, to confirm safety and efficiency and to define therapeutic targets.


2003 ◽  
Vol 10 (6) ◽  
pp. 401-408 ◽  
Author(s):  
Freddy Contreras ◽  
Mar??a Antonia de la Parte ◽  
Julio Cabrera ◽  
Nestor Ospino ◽  
Zafar H. Israili ◽  
...  

2008 ◽  
Vol 79 (1) ◽  
pp. 169-178 ◽  
Author(s):  
M. Yamada ◽  
M. Kushibiki ◽  
T. Osanai ◽  
H. Tomita ◽  
K. Okumura

1997 ◽  
Vol 273 (1) ◽  
pp. R187-R196 ◽  
Author(s):  
R. S. Weisinger ◽  
J. R. Blair-West ◽  
D. A. Denton ◽  
E. Tarjan

The contribution of brain angiotensin II (ANG II) to thirst and Na+ appetite of sheep was evaluated. Thirst was stimulated by water deprivation, intracarotid or intracerebroventricular infusion of ANG II, or intracarotid or intracerebroventricular infusion of hypertonic solution. Intracerebroventricular infusion, over 1-3 h, of the ANG II type 1 (AT1) receptor antagonist, losartan, decreased or abolished water intake caused by all of the stimuli tested. Intracerebroventricular infusion of ZD-7155, another AT1-receptor antagonist, blocked ANG II-induced water intake. Neither losartan nor ZD-7155 infused intracerebroventricularly altered the Na+ appetite of Na(+)-depleted sheep. Intracerebroventricular infusion of losartan over 3 h, however, did block the increase in water intake and the decrease in Na+ intake caused by intracerebroventricular infusion of hypertonic NaCl in Na(+)-depleted sheep. Intracerebroventricular infusion of the ANG II type 2 (AT2) receptor antagonist, PD-123319, over 1-3 h, did not alter ANG II-induced water intake or Na+ depletion-induced Na+ intake. These results are consistent with the proposition that brain ANG II, working via AT1 receptors, is involved in the neural system controlling some aspects of physiological thirst and Na+ appetite. A role for AT2 receptors in physiological thirst or Na+ appetite is not supported by the present results.


2009 ◽  
Vol 296 (1) ◽  
pp. F127-F134 ◽  
Author(s):  
Anja M. Jensen ◽  
Eun Hui Bae ◽  
Robert A. Fenton ◽  
Rikke Nørregaard ◽  
Søren Nielsen ◽  
...  

Release of bilateral ureteral obstruction (BUO) is associated with nephrogenic diabetes insipidus (NDI) and a reduced abundance of the vasopressin-regulated aquaporins. To evaluate the role of the vasopressin type 2 receptor (V2R), we determined V2R abundance in kidneys from rats subjected to 24-h BUO or 24-h unilateral ureteral obstruction (UUO) followed by 48-h release. Because angiotensin II type 1 (AT1) receptor blockade attenuates postobstructive polyuria and aquaporin-2 (AQP2) downregulation, we examined the effect of AT1 receptor blockade on AQP2 phosphorylated at serine 256 (pS256-AQP2) and V2 receptor complex abundance in kidney inner medulla (IM). Furthermore, cAMP generation in sodium fluoride- and forskolin-stimulated inner medullary membrane fractions was studied after release of BUO. V2R was significantly reduced to 12% of sham levels in IM and to 52% of sham levels in cortex and outer stripe of outer medulla (OSOM) from BUO rats. In UUO rats, V2R abundance in the obstructed kidney IM decreased to 35% of sham levels, whereas it was comparable to sham levels in the nonobstructed kidney IM. No significant change was observed in cortex and OSOM. AT1 receptor blockade attenuated V2R, pS256-AQP2, and Gsα protein downregulation in IM and partially reversed the obstruction-induced inhibition of sodium fluoride- and forskolin-stimulated cAMP generation in inner medullary membrane fractions from BUO rats. In conclusion, V2R downregulation plays a pivotal role in development of NDI after release of BUO. In addition, we have shown that angiotensin II regulates the V2 receptor complex and pS256-AQP2 in postobstructive kidney IM, probably by stimulating cAMP generation.


Sign in / Sign up

Export Citation Format

Share Document