scholarly journals Unfolding of colicin A during its translocation through the Escherichia coli envelope as demonstrated by disulfide bond engineering.

1994 ◽  
Vol 269 (40) ◽  
pp. 24820-24825 ◽  
Author(s):  
D. Duché ◽  
D. Baty ◽  
M. Chartier ◽  
L. Letellier
FEBS Letters ◽  
1999 ◽  
Vol 443 (3) ◽  
pp. 313-316 ◽  
Author(s):  
Andrea Battistoni ◽  
Anna Paola Mazzetti ◽  
Giuseppe Rotilio

2019 ◽  
Vol 7 (11) ◽  
pp. 488 ◽  
Author(s):  
Clifton K. Fagerquist ◽  
William J. Zaragoza ◽  
Michelle Q. Carter

Shiga-toxin-producing Escherichia coli (STEC) are a burden on agriculture and a threat to public health. Rapid methods are needed to identify STEC strains and characterize the Shiga toxin (Stx) they produce. We analyzed three STEC strains for Stx expression, using antibiotic induction, matrix-assisted laser desorption/ionization time-of-flight-time-of-flight (MALDI-TOF-TOF) mass spectrometry, and top-down proteomic analysis. E. coli O157:H- strain 493/89 is a clinical isolate linked to an outbreak of hemolytic uremic syndrome (HUS) in Germany in the late 1980s. E. coli O145:H28 strains RM12367-C1 and RM14496-C1 were isolated from an agricultural region in California. The stx operon of the two environmental strains were determined by whole genome sequencing (WGS). STEC strain 493/89 expressed Shiga toxin 2a (Stx2a) as identified by tandem mass spectrometry (MS/MS) of its B-subunit that allowed identification of the type and subtype of the toxin. RM12367-C1 also expressed Stx2a as identified by its B-subunit. RM14496-C1 expressed Shiga toxin 1a (Stx1a) as identified from its B-subunit. The B-subunits of Stx1 and Stx2 both have an intramolecular disulfide bond. MS/MS was obtained on both the disulfide-bond-intact and disulfide-bond-reduced B-subunit, with the latter being used for top-down proteomic identification. Top-down proteomic analysis was consistent with WGS.


2010 ◽  
Vol 45 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Nathaniel Liddy ◽  
Peter E. Molloy ◽  
Alan D. Bennett ◽  
Jonathan M. Boulter ◽  
Bent K. Jakobsen ◽  
...  

2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Brian M. Meehan ◽  
Cristina Landeta ◽  
Dana Boyd ◽  
Jonathan Beckwith

ABSTRACT Disulfide bonds are critical to the stability and function of many bacterial proteins. In the periplasm of Escherichia coli, intramolecular disulfide bond formation is catalyzed by the two-component disulfide bond forming (DSB) system. Inactivation of the DSB pathway has been shown to lead to a number of pleotropic effects, although cells remain viable under standard laboratory conditions. However, we show here that dsb strains of E. coli reversibly filament under aerobic conditions and fail to grow anaerobically unless a strong oxidant is provided in the growth medium. These findings demonstrate that the background disulfide bond formation necessary to maintain the viability of dsb strains is oxygen dependent. LptD, a key component of the lipopolysaccharide transport system, fails to fold properly in dsb strains exposed to anaerobic conditions, suggesting that these mutants may have defects in outer membrane assembly. We also show that anaerobic growth of dsb mutants can be restored by suppressor mutations in the disulfide bond isomerization system. Overall, our results underscore the importance of proper disulfide bond formation to pathways critical to E. coli viability under conditions where oxygen is limited. IMPORTANCE While the disulfide bond formation (DSB) system of E. coli has been studied for decades and has been shown to play an important role in the proper folding of many proteins, including some associated with virulence, it was considered dispensable for growth under most laboratory conditions. This work represents the first attempt to study the effects of the DSB system under strictly anaerobic conditions, simulating the environment encountered by pathogenic E. coli strains in the human intestinal tract. By demonstrating that the DSB system is essential for growth under such conditions, this work suggests that compounds inhibiting Dsb enzymes might act not only as antivirulents but also as true antibiotics.


2011 ◽  
Vol 11 (1) ◽  
pp. 74 ◽  
Author(s):  
Larissa Tetsch ◽  
Christiane Koller ◽  
Alexandra Dönhöfer ◽  
Kirsten Jung

Sign in / Sign up

Export Citation Format

Share Document