scholarly journals The role of the carrier protein and disulfide formation in the folding of beta-lactamase fusion proteins in the endoplasmic reticulum of yeast.

1994 ◽  
Vol 269 (19) ◽  
pp. 13887-13892
Author(s):  
M. Simonen ◽  
E. Jämsä ◽  
M. Makarow
2011 ◽  
Vol 441 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Xi Wang ◽  
Likun Wang ◽  
Xi'e Wang ◽  
Fei Sun ◽  
Chih-chen Wang

Prx4 (peroxiredoxin 4) is the only peroxiredoxin located in the ER (endoplasmic reticulum) and a proposed scavenger for H2O2. In the present study, we solved crystal structures of human Prx4 in three different redox forms and characterized the reaction features of Prx4 with H2O2. Prx4 exhibits a toroid-shaped decamer constructed of five catalytic dimers. Structural analysis revealed conformational changes around helix α2 and the C-terminal reigon with a YF (Tyr-Phe) motif from the partner subunit, which are required for interchain disulfide formation between Cys87 and Cys208, a critical step of the catalysis. The structural explanation for the restricting role of the YF motif on the active site dynamics is provided in detail. Prx4 has a high reactivity with H2O2, but is susceptible to overoxidation and consequent inactivation by H2O2. Either deletion of the YF motif or dissociation into dimers decreased the susceptibility of Prx4 to overoxidation by increasing the flexibility of Cys87.


Author(s):  
Thomas T.F. Huang ◽  
Patricia G. Calarco

The stage specific appearance of a retravirus, termed the Intracisternal A particle (IAP) is a normal feature of early preimplantation development. To date, all feral and laboratory strains of Mus musculus and even Asian species such as Mus cervicolor and Mus pahari express the particles during the 2-8 cell stages. IAP form by budding into the endoplasmic reticulum and appear singly or as groups of donut-shaped particles within the cisternae (fig. 1). IAP are also produced in large numbers in several neoplastic cells such as certain plasmacytomas and rhabdomyosarcomas. The role of IAP, either in normal development or in neoplastic behavior, is unknown.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 549-557 ◽  
Author(s):  
Anne J Welcker ◽  
Jacky de Montigny ◽  
Serge Potier ◽  
Jean-Luc Souciet

Abstract Chromosomal rearrangements, such as deletions, duplications, or Ty transposition, are rare events. We devised a method to select for such events as Ura+ revertants of a particular ura2 mutant. Among 133 Ura+ revertants, 14 were identified as the result of a deletion in URA2. Of seven classes of deletions, six had very short regions of identity at their junctions (from 7 to 13 bp long). This strongly suggests a nonhomologous recombination mechanism for the formation of these deletions. The total Ura+ reversion rate was increased 4.2-fold in a rad52Δ strain compared to the wild type, and the deletion rate was significantly increased. All the deletions selected in the rad52Δ context had microhomologies at their junctions. We propose two mechanisms to explain the occurrence of these deletions and discuss the role of microhomology stretches in the formation of fusion proteins.


2021 ◽  
Vol 22 (9) ◽  
pp. 4646
Author(s):  
Alexey A. Tinkov ◽  
Monica M. B. Paoliello ◽  
Aksana N. Mazilina ◽  
Anatoly V. Skalny ◽  
Airton C. Martins ◽  
...  

Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.


Author(s):  
Ankita Bhardwaj ◽  
Rishi Bhardwaj ◽  
Shweta Sharma ◽  
Suresh Kumar Sharma ◽  
Devinder Kumar Dhawan ◽  
...  

2008 ◽  
Vol 233 (10) ◽  
pp. 1289-1300 ◽  
Author(s):  
Peng Zhao ◽  
Xiaoyan Xiao ◽  
Agnes S. Kim ◽  
M. Fatima Leite ◽  
Jinxia Xu ◽  
...  

The endoplasmic reticulum (ER) is exquisitely sensitive to changes in its internal environment. Various conditions, collectively termed “ER stress”, can perturb ER function, leading to the activation of a complex response known as the unfolded protein response (UPR). Although c-Jun N-terminal kinase (JNK) activation is nearly always associated with cell death by various stimuli, the functional role of JNK in ER stress-induced cell death remains unclear. JNK regulates gene expression through the phosphorylation and activation of transcription factors, such as c-Jun. Here, we investigated the role of c-Jun in the regulation of ER stress-related genes. c-Jun expression levels determined the response of mouse fibroblasts to ER stress induced by thapsigargin (TG, an inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase). c-jun−/− mouse fibroblast cells were more sensitive to TG-induced cell death compared to wild-type mouse fibroblasts, while reconstitution of c-Jun expression in c-jun−/− cells (c-Jun Re) enhanced resistance to TG-induced cell death. The expression levels of ER chaperones Grp78 and Gadd153 induced by TG were lower in c-Jun Re than in c-jun−/− cells. Moreover, TG treatment significantly increased calcineurin activity in c-jun−/− cells, but not in c-Jun Re cells. In c-Jun Re cells, TG induced the expression of Adapt78, also known as the Down syndrome critical region 1 (DSCR1), which is known to block calcineurin activity. Taken together, our findings suggest that c-Jun, a transcription factor downstream of the JNK signaling pathway, up-regulates Adapt78 expression in response to TG-induced ER stress and contributes to protection against TG-induced cell death.


Sign in / Sign up

Export Citation Format

Share Document