scholarly journals The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network

2020 ◽  
Vol 295 (3) ◽  
pp. 800-807
Author(s):  
Masashi Iwamoto ◽  
Wakana Saso ◽  
Kazane Nishioka ◽  
Hirofumi Ohashi ◽  
Ryuichi Sugiyama ◽  
...  
2019 ◽  
Vol 295 (3) ◽  
pp. 800-807 ◽  
Author(s):  
Masashi Iwamoto ◽  
Wakana Saso ◽  
Kazane Nishioka ◽  
Hirofumi Ohashi ◽  
Ryuichi Sugiyama ◽  
...  

Sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the surface of human hepatocytes and functions as an entry receptor of hepatitis B virus (HBV). Recently, we have reported that epidermal growth factor receptor (EGFR) is involved in NTCP-mediated viral internalization during the cell entry process. Here, we analyzed which function of EGFR is essential for mediating HBV internalization. In contrast to the reported crucial function of EGFR-downstream signaling for the entry of hepatitis C virus (HCV), blockade of EGFR-downstream signaling proteins, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT), had no or only minor effects on HBV infection. Instead, deficiency of EGFR endocytosis resulting from either a deleterious mutation in EGFR or genetic knockdown of endocytosis adaptor molecules abrogated internalization of HBV via NTCP and prevented viral infection. EGFR activation triggered a time-dependent relocalization of HBV preS1 to the early and late endosomes and to lysosomes in concert with EGFR transport. Suppression of EGFR ubiquitination by site-directed mutagenesis or by knocking down two EGFR-sorting molecules, signal-transducing adaptor molecule (STAM) and lysosomal protein transmembrane 4β (LAPTM4B), suggested that EGFR transport to the late endosome is critical for efficient HBV infection. Cumulatively, these results support the idea that the EGFR endocytosis/sorting machinery drives the translocation of NTCP-bound HBV from the cell surface to the endosomal network, which eventually enables productive viral infection.


Virology ◽  
1993 ◽  
Vol 196 (2) ◽  
pp. 878-882 ◽  
Author(s):  
Stefano Menzo ◽  
Massimo Clementi ◽  
Elena Alfani ◽  
Patrizia Bagnarelli ◽  
Silvia Iacovacci ◽  
...  

2021 ◽  
Author(s):  
Kento Fukano ◽  
Mizuki Oshima ◽  
Senko Tsukuda ◽  
Hideki Aizaki ◽  
Mio Ohki ◽  
...  

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and non-competitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, co-immunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affect the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction, and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. Importance Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization, and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry, and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


2019 ◽  
Vol 116 (17) ◽  
pp. 8487-8492 ◽  
Author(s):  
Masashi Iwamoto ◽  
Wakana Saso ◽  
Ryuichi Sugiyama ◽  
Koji Ishii ◽  
Mio Ohki ◽  
...  

Sodium taurocholate cotransporting polypeptide (NTCP) is a host cell receptor required for hepatitis B virus (HBV) entry. However, the susceptibility of NTCP-expressing cells to HBV is diverse depending on the culture condition. Stimulation with epidermal growth factor (EGF) was found to potentiate cell susceptibility to HBV infection. Here, we show that EGF receptor (EGFR) plays a critical role in HBV virion internalization. In EGFR-knockdown cells, HBV or its preS1-specific fluorescence peptide attached to the cell surface, but its internalization was attenuated. PreS1 internalization and HBV infection could be rescued by complementation with functional EGFR. Interestingly, the HBV/preS1–NTCP complex at the cell surface was internalized concomitant with the endocytotic relocalization of EGFR. Molecular interaction between NTCP and EGFR was documented by immunoprecipitation assay. Upon dissociation from functional EGFR, NTCP no longer functioned to support viral infection, as demonstrated by either (i) the introduction of NTCP point mutation that disrupted its interaction with EGFR, (ii) the detrimental effect of decoy peptide interrupting the NTCP–EGFR interaction, or (iii) the pharmacological inactivation of EGFR. Together, these data support the crucial role of EGFR in mediating HBV–NTCP internalization into susceptible cells. EGFR thus provides a yet unidentified missing link from the cell-surface HBV–NTCP attachment to the viral invasion beyond the host cell membrane.


Sign in / Sign up

Export Citation Format

Share Document