scholarly journals Subpopulations of rat lung fibroblasts with different amounts of type I and type III collagen mRNAs.

1990 ◽  
Vol 265 (11) ◽  
pp. 6286-6290
Author(s):  
E Breen ◽  
V M Falco ◽  
M Absher ◽  
K R Cutroneo
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 444.1-444
Author(s):  
S. F. Madsen ◽  
A. S. Siebuhr ◽  
H. Jessen ◽  
J. M. B. Sand ◽  
M. Karsdal ◽  
...  

Background:Many systemic sclerosis (SSc) patients develop lung fibrosis, which contribute significantly to increased mortality1. Activated and proliferating fibroblasts are responsible for the excessive extracellular matrix (ECM) formation and stiffening of the connective tissue leading to skin and lung fibrosis. There is currently no effective treatment for the fibrosis in SSc and there is therefore a medical need for further understanding the pathogenesis of fibrosis. Fibrosis is associated with different growth factors, including tumor growth factor beta 1 (TGF-β1) and platelet derived growth factor-ab (PDGF-ab)2.Objectives:We investigated how stimulation with TGF-β1 and PDGF-ab affected the migration capacity and the ECM production using translational biomarkers of type I, III and VI collagens in healthy human dermal and lung fibroblasts.Methods:The fibroblasts were grown in DMEM media containing 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid for up to 12 days. The cells were stimulated with TGF-β1 [0.04-1 nM] or PDGF-ab [3 nM] at treatment initiation and changed twice a week. Non-stimulated fibroblasts (w/o) were used as control. A wound was induced by scratching the cells at day 1 after treatment initiation and the migration was followed for 2 days. Type I, III and VI collagen formation (PRO-C1, PRO-C3 and PRO-C6, respectively) were evaluated by validated ELISAs (Nordic Bioscience) in supernatant from day 0, 4, 8 and 12. Statistical analysis included 2-way ANOVA and Dunnett’s test.Results:The PDGF-ab stimulated dermal fibroblasts migrated significantly more than the non-stimulated (p<0.0001) and TGF-β1 stimulated (p<0.001) dermal fibroblasts 48 hours after the scratch (migration app. 70%, 30% and 30% respectively). There was no difference between the migration of the non-stimulated, TGF-β1 and PDGF-ab stimulated lung fibroblasts after 48 hours, as all migrated to approximately 70%.TGF-β1 stimulation led to a significant increase in type I collagen formation (PRO-C1) in both dermal and lung fibroblasts from day 4 and onwards compared to w/o (p<0.0001). TGF-β1 also lead to a significant increase in type III collagen formation (PRO-C3) from day 8 in lung fibroblasts compared to w/o (p<0.0001). PDGF-ab stimulation led to a significant increase in type III collagen formation in dermal fibroblasts from day 8 compared to w/o (p<0.0001). PDGF-ab stimulation led to a significant increase in type VI collagen formation (PRO-C6) in both dermal and lung fibroblasts from day 4 and onwards compared to w/o (p<0.0001).Conclusion:PDGF-ab increased the migration activity of the dermal fibroblasts, where the lung fibroblasts had a general high migration activity. The dermal and lung fibroblasts showcase the same ECM production within both type I and type VI collagen formation. The two fibroblasts types did however react opposite each other regarding the type III collagen formation: the dermal fibroblasts responded to PDGF-ab stimulation, where the lung fibroblasts responded to the TGF-β1 stimulation. The clear differences in the ECM production between the dermal and lung fibroblasts can be important in the search for an effective treatment for fibrosis in SSc and related lung fibrosis.References:[1]McNearney, T. A. et al. Pulmonary involvement in systemic sclerosis: Associations with genetic, serologic, sociodemographic, and behavioral factors. Arthritis Care Res.57, 318–326 (2007).[2]Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest.117, 524–529 (2007).Disclosure of Interests:Sofie Falkenløve Madsen Employee of: Nordic Bioscience and University of Copenhagen, Anne Sofie Siebuhr Employee of: Nordic Bioscience A/S, Henrik Jessen: None declared, Jannie Marie Bülow Sand Employee of: Nordic Bioscience A/S, Morten Karsdal Shareholder of: Nordic Bioscience A/S, Employee of: Nordic Bioscience A/S, Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Nordic Bioscience A/S


1994 ◽  
Vol 22 (1) ◽  
pp. 51S-51S ◽  
Author(s):  
MARIA C. MAGUIRE ◽  
CLARE M. O'CONNOR ◽  
MUIRIS X. FITZGERALD

1988 ◽  
Vol 36 (9) ◽  
pp. 1167-1173 ◽  
Author(s):  
P S Amenta ◽  
J Gil ◽  
A Martinez-Hernandez

We localized collagen types III, IV, and VI in normal rat lung by light and electron immunohistochemistry. Type IV collagen was present in every basement membrane examined and was absent from all other structures. Although types III and VI had a similar distribution, being present in the interstitium of major airways, blood vessels, and alveolar septa, as in other organs, they had different morphologies. Type III collagen formed beaded fibers, 15-20 nm in diameter, whereas type VI collagen formed fine filaments, 5-10 nm in diameter. Both collagen types were found exclusively in the interstitium, often associated with thick (30-35 nm) cross-banded type I collagen fibers. Occasionally, type III fibers and type VI filaments could be found bridging from the interstitium to the adventitial aspect of some basement membranes. Furthermore, the association of collagen type VI with types I and III and basement membranes suggests that type VI may contribute to integration of the various components of the pulmonary extracellular matrix into a functional unit.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
Bruna Zini de Paula Freitas ◽  
Fábio Guilherme Campos ◽  
Danilo Toshio Kanno ◽  
Andress Godoy Delben ◽  
José Aires Pereira ◽  
...  

1984 ◽  
Vol 62 (6) ◽  
pp. 462-469 ◽  
Author(s):  
Hardy Limeback ◽  
Kichibee Otsuka ◽  
Kam-Ling Yao ◽  
Jane E. Aubin ◽  
Jaro Sodek

A number of bone cell clones isolated from rat calvaria have been maintained in culture for more than 3 years. Several of these clones have undergone dramatic changes in phenotype. One of these clones, RGB 2.2, was observed originally to have a fibroblastic morphology in culture and to respond to parathyroid hormone (PTH), but not prostaglandin E2 (PGE2), with an increase in intracellular cAMP. Throughout several passages in early subcultures, these cells synthesized mostly type I collagen, with small amounts of type III and type V collagens. Whereas PTH had no detectable effect on collagen synthesis, PGE2 decreased the amount of total cell layer collagen, with the greatest effect on type III collagen, while increasing the proportion of type V collagen. Subsequent studies on these cells during 3 years in culture have indicated changes in their phenotype including a progressive change in morphology to a more cuboidal shape and a change in collagen synthesis, the cells producing large amounts of the "embryonic" collagen, α1(I) trimer. The reason(s) for the change in collagen expression is unknown, but may be the result of a change in which gene(s) is being expressed.


Author(s):  
Lucas Félix ROSSI ◽  
Manoel Roberto Maciel TRINDADE ◽  
Armando José D`ACAMPORA ◽  
Luise MEURER

ABSTRACT Background: Hernia correction is a routinely performed treatment in surgical practice. The improvement of the operative technique and available materials certainly has been a great benefit to the quality of surgical results. The insertion of prostheses for hernia correction is well-founded in the literature, and has become the standard of treatment when this type of disease is discussed. Aim: To evaluate two available prostheses: the polypropylene and polypropylene coated ones in an experimental model. Methods: Seven prostheses of each kind were inserted into Wistar rats (Ratus norvegicus albinus) in the anterior abdominal wall of the animal in direct contact with the viscera. After 90 days follow-up were analyzed the intra-abdominal adhesions, and also performed immunohistochemical evaluation and videomorphometry of the total, type I and type III collagen. Histological analysis was also performed with hematoxylin-eosin to evaluate cell types present in each mesh. Results: At 90 days the adhesions were not different among the groups (p=0.335). Total collagen likewise was not statistically different (p=0.810). Statistically there was more type III collagen in the coated polypropylene group (p=0.039) while type I was not different among the prostheses (p=0.050). The lymphocytes were statistically more present in the polypropylene group (p=0.041). Conclusion: The coated prosthesis was not different from the polypropylene one regarding the adhesion. Total and type I collagen were not different among the groups, while type III collagen was more present on the coated mesh. There was a greater number of lymphocytes on the polypropylene mesh.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Louie C. Alexander ◽  
Grant McHorse ◽  
Janet L. Huebner ◽  
Anne-Christine Bay-Jensen ◽  
Morten A. Karsdal ◽  
...  

Abstract Objective To compare C-reactive protein (CRP) and matrix metalloproteinase-generated neoepitope of CRP (CRPM) as biomarkers of inflammation and radiographic severity in patients with knee osteoarthritis. Methods Participants with symptomatic osteoarthritis (n=25) of at least one knee underwent knee radiographic imaging and radionuclide etarfolatide imaging to quantify inflammation of the knees and other appendicular joints. For purposes of statistical analysis, semi-quantitative etarfolatide and radiographic imaging scores were summed across the knees; etarfolatide scores were also summed across all joints to provide a multi-joint synovitis measure. Multiple inflammation and collagen-related biomarkers were measured by ELISA including CRP, CRPM, MMP-generated neoepitopes of type I collagen and type III collagen in serum (n=25), and CD163 in serum (n=25) and synovial fluid (n=18). Results BMI was associated with CRP (p=0.001), but not CRPM (p=0.753). Adjusting for BMI, CRP was associated with radiographic knee osteophyte score (p=0.002), while CRPM was associated with synovitis of the knee (p=0.017), synovitis of multiple joints (p=0.008), and macrophage marker CD163 in serum (p=0.009) and synovial fluid (p=0.03). CRP correlated with MMP-generated neoepitope of type I collagen in serum (p=0.045), and CRPM correlated with MMP-generated neoepitope of type III collagen in serum (p<0.0001). No biomarkers correlated with age, knee pain, or WOMAC pain. Conclusions To our knowledge, this is the first time that CRPM has been shown to be associated with knee and multi-joint inflammation based on objective imaging (etarfolatide) and biomarker (CD163) measures. These results demonstrate the capability of biomarker measurements to reflect complex biological processes and for neoepitope markers to more distinctly reflect acute processes than their precursor proteins. CRPM is a promising biomarker of local and systemic inflammation in knee OA that is associated with cartilage degradation and is independent of BMI. CRPM is a potential molecular biomarker alternative to etarfolatide imaging for quantitative assessment of joint inflammation.


Author(s):  
Linda Yuliati ◽  
Etik Mardliyati ◽  
Kusmarinah Bramono ◽  
Hans Joachim Freisleben

Background<br />Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF) and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast.<br /><br />Methods<br />Laboratory experiments were conducted using human dermal fibroblasts (HDF) isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. <br /><br />Results<br />Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p&lt;0.05). The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p&lt;0.05). <br /><br />Conclusion<br />Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.


Sign in / Sign up

Export Citation Format

Share Document