Covariance propagation and updating in the context of real-time radar data assimilation by quantitative precipitation forecast models

2000 ◽  
Vol 239 (1-4) ◽  
pp. 115-129 ◽  
Author(s):  
K.P. Georgakakos
2015 ◽  
Vol 144 (1) ◽  
pp. 193-212 ◽  
Author(s):  
Madalina Surcel ◽  
Isztar Zawadzki ◽  
M. K. Yau

Abstract This paper analyzes the case-to-case variability of the predictability of precipitation by a storm-scale ensemble forecasting (SSEF) system. Relationships are sought between ensemble spread and quantitative precipitation forecast (QPF) skill, and the characteristics of an event, such as the strength of the quasigeostrophic forcing for ascent, the presence of convective equilibrium, and the spatial extent of the precipitation system. It is found that most of the case-to-case variability of predictability is explained by the spatial coverage of the system. The relationship between convection and large-scale forcing seems to affect predictability mostly during the afternoon hours. While the relationships are weak for the entire dataset, two distinct types of cases are identified: widespread and diurnally forced cases. The loss of predictability at small scales, the effect of the radar data assimilation, and the comparison between forecasts from the SSEF and Lagrangian persistence forecasts are analyzed separately for these two types of cases. Despite overall predictability being better than average for the widespread cases, the loss of predictability with forecast time and spatial scale is just as rapid as for the other cases. For the diurnally forced cases, the radar data assimilation causes larger differences between the precipitation fields corresponding to the assimilating and nonassimilating members than for the widespread cases. However, the effect of radar data assimilation on QPF skill is similar for both types of cases. Also, for the diurnal cases, the models with radar data assimilation outperform very rapidly (after 2 h) the Lagrangian persistence forecasts.


2020 ◽  
Vol 10 (16) ◽  
pp. 5493 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

Satellite and radar observations represent two fundamentally different remote sensing observation types, providing independent information for numerical weather prediction (NWP). Because the individual impact on improving forecast has previously been examined, combining these two resources of data potentially enhances the performance of weather forecast. In this study, satellite radiance, radar radial velocity and reflectivity are simultaneously assimilated with the Proper Orthogonal Decomposition (POD)-based ensemble four-dimensional variational (4DVar) assimilation method (referred to as POD-4DEnVar). The impact is evaluated on continuous severe rainfall processes occurred from June to July in 2016 and 2017. Results show that combined assimilation of satellite and radar data with POD-4DEnVar has the potential to improve weather forecast. Averaged over 22 forecasts, RMSEs indicate that though the forecast results are sensitive to different variables, generally the improvement is found in different pressure levels with assimilation. The precipitation skill scores are generally increased when assimilation is carried out. A case study is also examined to figure out the contributions to forecast improvement. Better intensity and distribution of precipitation forecast is found in the accumulated rainfall evolution with POD-4DEnVar assimilation. These improvements are attributed to the local changes in moisture, temperature and wind field. In addition, with radar data assimilation, the initial rainwater and cloud water conditions are changed directly. Both experiments can simulate the strong hydrometeor in the precipitation area, but assimilation spins up faster, strengthening the initial intensity of the heavy rainfall. Generally, the combined assimilation of satellite and radar data results in better rainfall forecast than without data assimilation.


2013 ◽  
Vol 17 (8) ◽  
pp. 3095-3110 ◽  
Author(s):  
J. Liu ◽  
M. Bray ◽  
D. Han

Abstract. Mesoscale numerical weather prediction (NWP) models are gaining more attention in providing high-resolution rainfall forecasts at the catchment scale for real-time flood forecasting. The model accuracy is however negatively affected by the "spin-up" effect and errors in the initial and lateral boundary conditions. Synoptic studies in the meteorological area have shown that the assimilation of operational observations, especially the weather radar data, can improve the reliability of the rainfall forecasts from the NWP models. This study aims at investigating the potential of radar data assimilation in improving the NWP rainfall forecasts that have direct benefits for hydrological applications. The Weather Research and Forecasting (WRF) model is adopted to generate 10 km rainfall forecasts for a 24 h storm event in the Brue catchment (135.2 km2) located in southwest England. Radar reflectivity from the lowest scan elevation of a C-band weather radar is assimilated by using the three-dimensional variational (3D-Var) data-assimilation technique. Considering the unsatisfactory quality of radar data compared to the rain gauge observations, the radar data are assimilated in both the original form and an improved form based on a real-time correction ratio developed according to the rain gauge observations. Traditional meteorological observations including the surface and upper-air measurements of pressure, temperature, humidity and wind speed are also assimilated as a bench mark to better evaluate and test the potential of radar data assimilation. Four modes of data assimilation are thus carried out on different types/combinations of observations: (1) traditional meteorological data; (2) radar reflectivity; (3) corrected radar reflectivity; (4) a combination of the original reflectivity and meteorological data; and (5) a combination of the corrected reflectivity and meteorological data. The WRF rainfall forecasts before and after different modes of data assimilation are evaluated by examining the rainfall temporal variations and total amounts which have direct impacts on rainfall–runoff transformation in hydrological applications. It is found that by solely assimilating radar data, the improvement of rainfall forecasts are not as obvious as assimilating meteorological data; whereas the positive effect of radar data can be seen when combined with the traditional meteorological data, which leads to the best rainfall forecasts among the five modes. To further improve the effect of radar data assimilation, limitations of the radar correction ratio developed in this study are discussed and suggestions are made on more efficient utilisation of radar data in NWP data assimilation.


2017 ◽  
Vol 145 (2) ◽  
pp. 683-708 ◽  
Author(s):  
Xuanli Li ◽  
John R. Mecikalski ◽  
Derek Posselt

In this study, an ice-phase microphysics forward model has been developed for the Weather Research and Forecasting (WRF) Model three-dimensional variational data assimilation (WRF 3D-Var) system. Radar forward operators for reflectivity and the polarimetric variable, specific differential phase ( KDP), have been built into the ice-phase WRF 3D-Var package to allow modifications in liquid (cloud water and rain) and solid water (cloud ice and snow) fields through data assimilation. Experiments have been conducted to assimilate reflectivity and radial velocity observations collected by the Weather Surveillance Radar-1988 Doppler (WSR-88D) in Hytop, Alabama, for a mesoscale convective system (MCS) on 15 March 2008. Numerical results have been examined to assess the impact of the WSR-88D data using the ice-phase WRF 3D-Var radar data assimilation package. The main goals are to first demonstrate radar data assimilation with an ice-phase microphysics forward model and second to improve understanding on how to enhance the utilization of radar data in numerical weather prediction. Results showed that the assimilation of reflectivity and radial velocity data using the ice-phase system provided significant improvement especially in the mid- to upper troposphere. The improved initial conditions led to apparent improvement in the short-term precipitation forecast of the MCS. An additional experiment has been conducted to explore the assimilation of KDP data collected by the Advanced Radar for Meteorological and Operational Research (ARMOR). Results showed that KDP data have been successfully assimilated using the ice-phase 3D-Var package. A positive impact of the KDP data has been found on rainwater in the lower troposphere and snow in the mid- to upper troposphere.


2013 ◽  
Vol 141 (7) ◽  
pp. 2245-2264 ◽  
Author(s):  
Juanzhen Sun ◽  
Hongli Wang

Abstract The Weather Research and Forecasting Model (WRF) four-dimensional variational data assimilation (4D-Var) system described in Part I of this study is compared with its corresponding three-dimensional variational data assimilation (3D-Var) system using a Great Plains squall line observed during the International H2O Project. Two 3D-Var schemes are used in the comparison: a standard 3D-Var radar data assimilation (DA) that is the same as the 4D-Var except for the exclusion of the constraining dynamical model and an enhanced 3D-Var that includes a scheme to assimilate an estimated in-cloud humidity field. The comparison is made by verifying their skills in 0–6-h quantitative precipitation forecast (QPF) against stage-IV analysis, as well as in wind forecasts against radial velocity observations. The relative impacts of assimilating radial velocity and reflectivity on QPF are also compared between the 4D-Var and 3D-Var by conducting data-denial experiments. The results indicate that 4D-Var substantially improves the QPF skill over the standard 3D-Var for the entire 6-h forecast range and over the enhanced 3D-Var for most forecast hours. Radial velocity has a larger impact relative to reflectivity in 4D-Var than in 3D-Var in the first 3 h because of a quicker precipitation spinup. The analyses and forecasts from the 4D-Var and 3D-Var schemes are further compared by examining the meridional wind, horizontal convergence, low-level cold pool, and midlevel temperature perturbation, using analyses from the Variational Doppler Radar Analysis System (VDRAS) as references. The diagnoses of these fields suggest that the 4D-Var analyzes the low-level cold pool, its leading edge convergence, and midlevel latent heating in closer resemblance to the VDRAS analyses than the 3D-Var schemes.


Author(s):  
Jeong-Ho Bae ◽  
Ki-Hong Min

Radar observation data with high temporal and spatial resolution are used in the data assimilation experiment to improve precipitation forecast of a numerical model. The numerical model considered in this study is Weather Research and Forecasting (WRF) model with double-moment 6-class microphysics scheme (WDM6). We calculated radar equivalent reflectivity factor using higher resolution WRF and compared with radar observations in South Korea. To compare the precipitation forecast characteristics of three-dimensional variational (3D-Var) assimilation of radar data, four experiments are performed based on different precipitation types. Comparisons of the 24-h accumulated rainfall with Automatic Weather Station (AWS) data, Contoured Frequency by Altitude Diagram (CFAD), Time Height Cross Sections (THCS), and vertical hydrometeor profiles are used to evaluate and compare the accuracy. The model simulations are performed with and with-out 3D-VAR radar reflectivity, radial velocity and AWS assimilation for two mesoscale convective cases and two synoptic scale cases. The radar data assimilation experiment improved the location of precipitation area and rainfall intensity compared to the control run. Especially, for the two convective cases, simulating mesoscale convective system was greatly improved.


2020 ◽  
Vol 35 (6) ◽  
pp. 2345-2365
Author(s):  
Eder P. Vendrasco ◽  
Luiz A. T. Machado ◽  
Bruno Z. Ribeiro ◽  
Edmilson D. Freitas ◽  
Rute C. Ferreira ◽  
...  

AbstractThis research explores the benefits of radar data assimilation for short-range weather forecasts in southeastern Brazil using the Weather Research and Forecasting (WRF) Model’s three-dimensional variational data assimilation (3DVAR) system. Different data assimilation options are explored, including the cycling frequency, the number of outer loops, and the use of null-echo assimilation. Initially, four microphysics parameterizations are evaluated (Thompson, Morrison, WSM6, and WDM6). The Thompson parameterization produces the best results, while the other parameterizations generally overestimate the precipitation forecast, especially WDSM6. Additionally, the Thompson scheme tends to overestimate snow, while the Morrison scheme overestimates graupel. Regarding the data assimilation options, the results deteriorate and more spurious convection occurs when using a higher cycling frequency (i.e., 30 min instead of 60 min). The use of two outer loops produces worse precipitation forecasts than the use of one outer loop, and the null-echo assimilation is shown to be an effective way to suppress spurious convection. However, in some cases, the null-echo assimilation also removes convective clouds that are not observed by the radar and/or are still not producing rain, but have the potential to grow into an intense convective cloud with heavy rainfall. Finally, a cloud convective mask was implemented using ancillary satellite data to prevent null-echo assimilation from removing potential convective clouds. The mask was demonstrated to be beneficial in some circumstances, but it needs to be carefully evaluated in more cases to have a more robust conclusion regarding its use.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 853
Author(s):  
Feifei Shen ◽  
Jinzhong Min ◽  
Hong Li ◽  
Dongmei Xu ◽  
Aiqing Shu ◽  
...  

The impact of assimilating radar radial velocity and reflectivity on the analyses and forecast of Hurricane IKE is investigated within the framework of the WRF (Weather Research and Forecasting) model and its three-dimensional variational (3DVar) data assimilation system, including the hydrometeor control variables. Hurricane IKE in the year 2008 was chosen as the study case. It was found that assimilating radar data is able to effectively improve the small-scale information of the hurricane vortex area in the model background. Radar data assimilation experiments yield significant cyclonic wind increments in the inner-core area of the hurricane, enhancing the intensity of the hurricane in the model background. On the other hand, by extending the traditional control variables to include the hydrometeor control variables, the assimilation of radar reflectivity can effectively adjust the water vapor and hydrometeors of the background, further improving the track and intensity forecast of the hurricane. The precipitation forecast skill is also enhanced to some extent with the radar data assimilation, especially with the extended hydrometeor control variables.


Sign in / Sign up

Export Citation Format

Share Document