Reaction rate of combustion synthesis of an intermetallic compound

1998 ◽  
Vol 95 (2) ◽  
pp. 175-181 ◽  
Author(s):  
Tomohiro Akiyama ◽  
Hiromichi Isogai ◽  
Jun-ichiro Yagi
Author(s):  
C. S. Lin ◽  
W. A. Chiou ◽  
M. Meshii

The galvannealed steel sheets have received ever increased attention because of their excellent post-painting corrosion resistance and good weldability. However, its powdering and flaking tendency during press forming processes strongly impairs its performance. In order to optimize the properties of galvanneal coatings, it is critical to control the reaction rate between solid iron and molten zinc.In commercial galvannealing line, aluminum is added to zinc bath to retard the diffusion rate between iron and zinc by the formation of a thin layer of Al intermetallic compound on the surface of steel at initial hot-dip galvanizing. However, the form of this compound and its transformation are still speculated. In this paper, we report the direct observations of this compound and its transformation.The specimens were prepared in a hot-dip simulator in which the steel was galvanized in the zinc bath containing 0.14 wt% of Al at a temperature of 480 °C for 5 seconds and was quenched by liquid nitrogen.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012043
Author(s):  
I A Romanov ◽  
V I Borzenko ◽  
A N Kazakov

Abstract This work is devoted to an experimental study and comparison of the kinetics of hydrogen absorption by an intermetallic compound LaNi4.4Al0.3Fe0.3 in form of pure intermetallic compound free backfill and a compact based on it obtained by cold pressing with a spiral matrix of nickel-foam. To calculate the kinetic parameters of the hydrogen absorption reaction, the initial rates method is used. The PCT absorption isotherms are measured at temperatures of 313, 333, and 353 K. The experimental data are described with quite high confidence by the chosen model, which assumes that the reaction rate controlling step is the dissociative absorption of hydrogen on the surface of the a-phase. The rate of hydrogen absorption increases with increasing pressure drop and temperature. It is shown that the rate of hydrogen absorption by the sample of pure IMC is significantly less dependent on temperature compared to the compact sample. In addition, the reaction rate at temperatures of 313 and 333 K is higher for the free backfill sample, and at 353 K it is higher for the metal hydride compact. The values of the absorption constant and the activation energy of the hydrogen absorption reaction are determined for both samples.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1027
Author(s):  
Binxiang Cai ◽  
Huazhang Liu ◽  
Wenfeng Han

Fe2O3-based catalysts were prepared by solution combustion synthesis (SCS) with metal nitrates (Fe, K, Al, Ca) as the precursors and glycine as the fuel. The activities of catalysts were evaluated in terms of ammonia synthesis reaction rate in a fixed bed reactor similar to the industrial reactors. The results indicate that the precursor of catalyst prepared by SCS is Fe2O3 which facilitates the high dispersion of promoters to provide high activity. The catalysts exhibit higher activity for ammonia synthesis than that of traditional catalysts, and the reaction rate reaches 138.5 mmol g−1 h−1. Fe2O3 prepared by SCS could be favorable precursor for ammonia synthesis catalyst. The present study provides a pathway to prepare catalyst for ammonia synthesis.


2008 ◽  
Vol 368-372 ◽  
pp. 293-295 ◽  
Author(s):  
Gui Yang Liu ◽  
De Wei Guo ◽  
Jun Ming Guo ◽  
Li Li Zhang ◽  
Ke Xin Chen

Spinel LiMn2O4 powders were prepared by solution combustion synthesis using nitrate and acetate salts as raw materials and urea as fuel. The phase composition of as-synthesized powders was identified by XRD and the microscopic structure was examined by SEM. Single-phase spinel LiMn2O4 was prepared when acetate salts were used, and the incorporation of nitrate salts resulted in the formation of Mn2O3. The products consisted of slight agglomerations of fine particles with the size of 50-200nm. It was found that the addition of nitrate salts increased the reaction rate and the yield of LiMn2O4 was depressed when more nitrate salts were used as a reactant.


Sign in / Sign up

Export Citation Format

Share Document